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Abstract

We develop a dynamic structural model of patent screening incorporating incentives, intrinsic

motivation, and multi-round negotiation. We use natural language processing to create a new

measure of patent distance, which, together with detailed data on examiner decisions, enables

us to estimate the model and study strategic decisions by applicants and examiners. Using the

estimated model, we quantify the effectiveness of the U.S. Patent Office and evaluate coun-

terfactual policy reforms. We find that patent screening is moderately effective, given the

existing standards for patentability. Examiners exhibit substantial intrinsic motivation that

strongly improves screening quality. We quantify the annual social costs of patent screening

at $15.38bn, equivalent to 5% of total private sector R&D in the U.S. and show that reforms

limiting the number of negotiation rounds significantly reduce social costs.
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1 Introduction

Public institutions play a central role in promoting innovation. The two most important channels

are government support for public and private research and the allocation of property rights.

Support for research includes direct funding and indirect subsidies, while property rights, in

the form of patents, enhance innovation incentives for private-sector R&D. In 2015, the U.S.

federal government financed 24% of total R&D expenditures, or $120 billion (in 2025 USD).

At the same time, the U.S. Patent and Trademark Office (hereafter, Patent Office or USPTO)

issued 325,000 new patents. Patent rights promote innovation by increasing the private returns

to R&D, facilitating access to capital markets, and underpinning the market for technology,

especially for small, high-technology firms (Hall and Lerner, 2010; Galasso and Schankerman,

2018). The aggregate economic impact of these policies is magnified by the extensive knowledge

spillovers they generate (Bloom, Schankerman, and Van Reenen, 2013).

Despite the importance of innovation-supporting public institutions, little is known about whether

they allocate resources efficiently, and how organizational changes would affect their performance.

The contribution of this paper, as part of a broader research program, is to use structural mod-

eling to study the efficiency of resource allocation by innovation-supporting public agencies. Our

context is the U.S. patent system, with a focus on the quality of screening by the Patent Office.

The effectiveness of the U.S. patent system is a hotly debated policy issue. Academic scholars and

policymakers have argued that patent rights have increasingly become an impediment, rather

than an incentive, to innovation. These concerns have been prominently voiced in public debates

(Federal Trade Commission, 2011), U.S. Supreme Court decisions (eBay Inc. v. MercExchange

L.L.C., 547 U.S. 338, 2006), and significant statutory reforms of the patent system, such as the

2011 America Invents Act. Critics of the patent system claim that the problems arise in large

part from ineffective Patent Office screening, where patents are granted to inventions that do

not represent a substantial inventive step, especially in emerging areas such as business methods

and software (Jaffe and Lerner, 2004). The issue is important because granting excessive patent

rights imposes static and dynamic social costs: higher prices and deadweight loss on patented

goods, greater enforcement (litigation) costs, and higher transaction costs of R&D, along with

the potential for retarding cumulative innovation (Galasso and Schankerman, 2015).

We develop a dynamic structural model of patent screening in the U.S. that reflects the actual

patent application and examination process. An applicant is endowed with patent claims that

are heterogeneous in their true private value and their true distance to prior art (which consists

of any knowledge in the public domain, including patents). These claims delineate the scope of

the property rights sought by the applicant, and the applicant chooses how much to exaggerate
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them beyond what is covered by the underlying invention, if at all. Exaggerating the scope of

claims increases potential returns but also increases the risk of a lengthy, costly negotiation with

the assigned examiner.

Once the application is assigned to a patent examiner, and in order to decide on granting or

rejecting the patent, the examiner searches the prior art to gauge whether the submitted appli-

cation represents a sufficient advance to warrant a patent. The patent examiner does not observe

the actual distance of each claim from prior patents. However, through their prior art search,

the examiner obtains an error-ridden assessment of distances for each claim in the submitted

application.

At each stage of the multi-round negotiation that follows their search, the examiner acts first,

deciding whether to grant or reject the patent application. The examiner has grounds to reject the

patent application if they assess any claims to have a distance to prior art below the patentability

threshold. Nonetheless, an examiner with grounds for rejecting the application will choose to

grant a patent if doing so maximizes their expected payoff. Upon receiving a rejection, the

applicant decides whether to abandon their application or continue the negotiation. Continuing

the examination involves narrowing claims’ scope, which increases their distance from prior art

but, at the same time, reduces their private value.

The examiner’s payoff from each decision includes an extrinsic incentive, known as credits, which

form part of their performance assessment and consideration for a bonus. The examiner also

incurs an intrinsic utility cost from granting claims with a distance below the patentability

threshold. This component captures the idea that workers may care about behaving in a way

consistent with the mission of the public agency. Hence, we incorporate the concept of intrinsic

motivation from Besley and Ghatak (2005)—the alignment of workers’ objectives with the public

agency’s mission.

Modeling examiner-applicant negotiations (or multi-stage bargaining in other contexts) is gen-

erally challenging, as it typically involves at least one agent forming beliefs about unobserved

payoff-relevant variables at each stage of the negotiations. This complication is also present in

the general version of our model, where the examiner would need to update their beliefs of the

true distance and value of each claim based on the applicant’s actions in each round. Empirical

implementation of such a model is practically infeasible.

To make progress, we derive necessary and sufficient conditions on the functional forms of key

elements of the model that ensure the examiner does not need to form beliefs about the underlying

unobserved true distances and claim values. This step converts the model to one that we can solve

by backward induction. Our empirical analysis adopts intuitive functional form choices within
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the permissible class, and we examine the robustness of our estimates to alternatives within the

class. We argue that the conditions we specify for simplifying the equilibrium are consistent with

the specific institutional features of our context. There may also be other contexts in which our

conditions reasonably apply, but our approach should not be viewed as a general approach to

the estimation of dynamic multi-round negotiations.

We estimate the model using data on examiner decisions and patent claim texts. The Patent

Office collects detailed data on all applications, not just granted patents, and records examiner

decisions over negotiation rounds. The decision dataset we create covers approximately 55 million

decisions on 20 million patent claims on applications filed between 2011 and 2013. The claim text

data we use contains about 105 million claims granted in 1976–2020. We apply modern natural

language processing methods to the text data to develop a novel measure of distance between

patent claims, a key ingredient of the model. We use the new distance measure to estimate,

for the first time, the patentability threshold expressed in terms of the minimum distance from

prior patents required for patent eligibility, representing the inventive step. Using the estimated

patentability threshold, we can quantify the extent to which invalid claims are granted (false

grants, or “type 1” errors) and valid claims are not granted (false rejections, or “type 2” errors).

This information is at the heart of evaluating screening effectiveness.

We conduct external validation tests that confirm our claim distance measure provides an in-

formative signal. However, since these “data” arise from the output of a neural network, we

acknowledge that the distance metric may still contain measurement error. This potential prob-

lem occurs across all studies that use natural language processing and other AI methods to

generate input variables.1

There are four primary empirical findings. First, patent screening is relatively effective, given

the judicial standards of patentability that the Patent Office is mandated to enforce. While more

than 80% of patent claims have an initial distance below the patentability threshold and should

be rejected, screening weeds out or narrows them during negotiation rounds so that only about

6% of granted claims are below the threshold. Still, 13% of granted patents contain at least one

claim that does not meet the threshold, implying that type 1 errors do occur.

Second, inventors substantially exaggerate the scope of their invention in the initial patent appli-

cations. On average, this raises claim values by about 20%, but there is substantial heterogeneity.

Importantly, since the decision on how much to exaggerate is endogenous in the model, it changes

1Developing methods that account for using AI-generated variables as data remains an important topic for

future research. A recent example is Battaglia, Christensen, Hansen, and Sacher (2024).
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in response to reforms to the patent prosecution process. Third, abandonment of valid claims

is more common than the grant of invalid claims, with 16% of abandoned claims meeting the

threshold for patentability. This manifestation of imperfect screening has been largely ignored in

the policy discourse. Finally, we estimate large and heterogeneous examiner intrinsic motivation.

These estimates provide the first structural quantification of intrinsic motivation in a public

agency, where one would expect worker motivation to be especially relevant (Besley and Ghatak,

2005).

We conduct counterfactual reforms, including changes to patent applicant fees, restrictions on the

number of negotiation rounds, removing the intrinsic motivation of patent examiners, and limiting

examiner credits. We study the effects of these reforms on three dimensions of performance:

examination speed, measured by the equilibrium number of rounds; and two types of screening

errors, measured by the frequency of granting claims that do not meet the patentability threshold

(“type 1” errors) and not granting claims that do pass the threshold (“type 2” errors). Both errors

impose social costs. Incorrect grants impose ex post welfare costs (deadweight loss) from higher

prices and litigation costs associated with enforcing these patents. Failure to grant valid claims

dilutes innovation incentives and discourages the development of new inventions that create

positive social value.

A key feature of our counterfactuals is that reforms typically involve a trade-off between type 1

and type 2 errors: policies that make prosecution stricter lead to fewer grants of invalid claims

but to increased abandonment of valid claims. The policy conclusions from reforms are thus

ambiguous, as they will depend not only on the frequency of each type of error but also on the

magnitude of social costs associated with those errors. Therefore, we develop a methodology to

quantify the social costs in the current environment and under various counterfactual reforms. We

estimate the total social costs of patent screening at $15.38bn per annual cohort of applications,

which is equivalent to 5% of total R&D performed by business enterprises in the United States.

We show that the social costs of screening are affected by institutional design features. First,

restrictions on the number of negotiation rounds (absent in the current U.S. patent system) sig-

nificantly reduce the social costs of screening, up to 37% when only one round is allowed. Second,

removing intrinsic motivation increases the frequency with which examiners grant invalid patents

approximately sevenfold, further demonstrating that intrinsic motivation strongly affects the ac-

curacy of patent screening. This finding highlights the importance of designing human resource

policies to select examiners with high intrinsic motivation and maintaining this motivation over

their careers.

Finally, we find that extrinsic incentives in the form of examiner credits, by themselves, have
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little impact on any counterfactual outcomes. We interpret this result as indicating that the

high levels of intrinsic motivation we estimate leave little scope for extrinsic incentives. However,

removing credits when examiners have no intrinsic motivation does increase social costs, which

indicates that extrinsic and intrinsic motivation are substitutes rather than complements in this

context.

Related Literature We contribute to the literature on intrinsic motivation and design of

incentives in mission-oriented agencies. Theoretical papers examine how extrinsic rewards can

crowd out intrinsic motivation (Benabou and Tirole, 2003; 2006), while Besley and Ghatak

(2005) emphasizes how intrinsic motivation—defined as the alignment between worker and agency

objectives—induces welfare-improving sorting of workers and affects the optimal design of in-

centives and authority. Empirical studies have typically used field experiments to analyze how

intrinsic motivation affects public agency performance, using various proxies for motivation (lead-

ing examples are Ashraf, Bandiera, Davenport, and Lee, 2020 and Khan, 2025). By contrast, our

paper is the first to estimate intrinsic motivation in a structural model of a public agency, and our

results confirm the importance of human resource policies that sustain high intrinsic motivation.

Recent papers study how screening mechanisms affect the performance of public agencies. Adda

and Ottaviani (2024) develops a model of nonmarket allocation of resources, such as the awarding

of research grants, and shows how informational constraints affect the optimal allocation rules. Li

and Agha (2015) analyzes the allocation of research grants at the National Institutes of Health

(NIH) and shows that peer review increases the effectiveness of grants in terms of post-grant

citations. Azoulay, Graff Zivin, Li, and Sampat (2018) studies the economic impact of NIH

grants, linking screening outcomes to publication citations and other innovation outcomes.

In the patent literature, empirical papers have shown that patent examiner characteristics and

extrinsic incentives affect the quality of granted patents (Cockburn, Kortum, and Stern, 2003;

Frakes and Wasserman, 2017). As a result of these findings, in our model we incorporate het-

erogeneity in patent examiner characteristics, including intrinsic motivation, that can affect the

quality of patent screening.

The most closely related paper on patent screening is Schankerman and Schuett (2022), which

develops an integrated framework to study patent screening, encompassing the patent application

decision, examination, post-grant licensing, and court litigation. Their model is calibrated on U.S.

data and used to evaluate a wide range of counterfactual patent and court reforms. While they

estimate the effectiveness of patent examination, they treat it as an exogenous parameter, and

they do not model the prosecution process itself. Our dynamic equilibrium model of the patent

examination process allows us to study how reforms to the negotiation process and agents’
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incentives affect screening quality. As such, our paper complements Schankerman and Schuett

(2022), but an integration of the two approaches remains for future research.

2 Model of the Patent Screening Process

Before describing the model, we highlight two aspects of our approach. First, in a departure from

most existing literature, we model patents as collections of claims that are heterogeneous both

in their private value and in their distance from previous inventions. The patent document is

composed of independent claims that delineate the scope of the property rights. In reality, and

in the model, the examiner assesses the patentability of each claim separately by searching prior

art and then decides whether to accept or reject the patent application as a whole. We provide

more details about this negotiation process later.

Second, we analyze screening of a patent application, taking as given that the underlying inven-

tion has been developed. The validity of the structural model does not require a model of the

potential applicant’s decision to invest in developing their idea into an invention. However, to

quantify the social costs associated with the screening system, as we do in Section 7, we develop

a complementary model of the development decision.

2.1 Model Description

We model the patent screening process as a dynamic game between an applicant, a, and an

examiner, e, in technology area T . Both the applicant and the examiner are risk-neutral expected

utility maximizers who discount future payoffs by the factor β each period. The model features

four stages: (i) Application Drafting, (ii) Examiner Search, (iii) Negotiation, and (iv) Patent

Renewal. We present the structure and timing of the model, focusing first on the actions of the

applicant and examiner in each stage of the game, and then on their corresponding payoffs.

Figure 1 depicts the model’s extensive form, starting with the “Application Drafting” stage. An

applicant is endowed with an invention comprising M0 components, each of which constitutes

an independent claim in a patent application.2 We characterize each claim by the pair (D∗
j , v

∗
j ),

where D∗
j is the distance of the true version of claim j to the nearest claim in any existing

invention in the public domain (“prior art”), and v∗j denotes the initial flow returns (or “value”)

2Note two points. First, we do not endogenize the division of the invention into claims. Second, a patent

application includes both independent and dependent claims. The former delineates the main boundaries of the

asserted property right, which determine the value of the patent to the applicant. Dependent claims clarify content

of independent claims but do not expand the boundaries. In this paper we focus on independent claims.
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Figure 1. Extensive form of the model
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that would be generated by the true version of claim j once commercialized. We define the

returns v∗j as relative to the applicant’s outside option, for example, protecting by trade secrecy.

We emphasize that distance and value represent distinct dimensions that should not be conflated.

A smaller claim distance indicates that the claim is “less new” relative to existing patents, but

this alone does not mean it is low value.3

3To illustrate this point, we consider a patent in our data set on a battery where the leading claim specifies “at

least 4 Watt-hours of capacity” (US patent no. 8,617,259). We created a synthetic claim with identical text except

that we doubled the battery capacity to “at least 8 Watt-hours of capacity”. Our algorithm for measuring patent

claim distance, described in Section 3.2, scores these patents as nearly identical in terms of the distance between

them. Yet, clearly, the value of the synthetic patent would be much larger due to the doubling of capacity.
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2.1.1 Applicant’s Patenting and Padding Decisions

The applicant’s first decision is whether to apply for a patent. If they do not, the game ends.

Applying involves filing a patent application, which is a written description of the property rights

associated with the invention. The applicant must choose the extent to which they exaggerate

(or understate) the true scope of the claims in the patent application. We call this choice the

level of padding, denoted by p. Padding obfuscates the true scope of the invention by concealing

the true inventive step and thereby expands the property right.

The basic trade-off for the applicant in deciding how much to pad is between increased value from

obtaining a large scope for the claim against the increased risk of rejection of the application by

the examiner. Padding raises the applicant’s revenue, but it necessarily moves the application

closer to the prior art and thus increases the likelihood of examiner rejections during the exam-

ination process because the claim is too close to prior art. To capture the trade-off, we define

initial padded (flow) returns to claim j, ṽ1j = V(v∗j , p), which is increasing in v∗j and p, and initial

padded distance D̃1
j = D̃(D∗

j , p), which is increasing in D∗
j but decreasing in p.

Figure 2 illustrates the trade-off relating to padding. The orange checkerboard semicircle in the

top left corner represents the closest existing invention to the claim j, which is the small full blue

circle in the bottom right corner. The applicant pads the true claim to create the larger (and

higher value) cross-hatched circle. The distance between the true claim and the nearest existing

invention isD∗
j , whereas the distance between the padded claim and the closest point is D̃j . In the

model and empirical work, the applicant pads all claims by the same proportion. Incorporating

claim-specific padding would not deliver any additional modeling insights but would greatly

complicate model implementation.

Finally, padding also involves additional drafting work for the applicant’s attorney and thus

creates a direct cost to the applicant at the point of application, denoted F app(p), in addition to

the fixed Patent Office application fee, ϕapp.

2.1.2 Examiner Assignment, Search, and Assessment

Moving to the “Examiner Search” stage of Figure 1, the Patent Office assigns the received

application randomly to an examiner within the relevant technology area. The evidence broadly

supports the quasi-random assignment of applications to examiners (Sampat and Williams, 2019;

Feng and Jaravel, 2020). Once assigned, the examiner searches the existing prior art to assess

the validity of the application.

Claims on patent applications are meant to meet two key statutory requirements for patentability

under the U.S. federal code: novelty (U.S. Code 35, Section 102) and nonobviousness (Section
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Figure 2. Claims and padding
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103). Novelty requires that the claim has not been in use for one year before filing. Nonobviousness

requires that the claim makes an inventive step beyond the closest existing invention (or other

publicly available prior art) that would not be self-evident to someone skilled in the relevant area.

In this paper, we interpret the inventive step in terms of the distance between a patent claim

and prior art, with the novelty and nonobviousness requirements satisfied if distance exceeds a

threshold, denoted τ .4

After searching prior art, the examiner assesses the nonobviousness of each claim as written,

that is, using the padded claim. Denote their initial assessment of claim j’s padded distance by

D̂1
j = D(D∗

j , p, ε), where ε represents the stochastic examiner error in assessing nonobviousness.

The function D is strictly increasing in D∗
j and ε and decreasing in p. It is increasing in ε

because a larger error means that the examiner fails to identify some relevant prior art and thus

over-estimates distance. To make the model empirically tractable, we assume that the examiner’s

assessment error is uniform across claims in the patent, remains constant during the examination,

and is independent of the true claim distance D∗
j and p.

It is the examiner’s mandate to reject the patent if any claim is judged to be below the patentabil-

ity threshold (i.e., too small an inventive step relative to prior art). Thus, we say that the ex-

aminer has grounds to reject the patent application if the assessed padded distance of any of

4There is also the enablement requirement (Section 112), mandating the written claim be clear in identifying

the boundaries of claimed property rights and precise, so that someone skilled in the arts could make and use the

invention. Using the Office Action Research Dataset described in Section 3.1, we find that 80% of examiner decisions

containing a Section 112 rejection also contain a 102/103 rejection. Thus, we focus on novelty/nonobviousness

(hereafter referred to as nonobviousness). Finally, there is also a subject matter eligibility criterion (Section 101),

a more procedural question of whether the content is “patentable”, but this does not depend on distance from

prior art and thus we do not consider it in this paper.
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the constituent claims falls below the patentability threshold. However, as we explain in Section

2.1.4 where we describe the examiner’s payoffs for granting/rejecting a patent, having grounds

for rejecting a patent will not always compel an examiner to choose to reject the patent. This is

because the examiner will make their decisions on whether to grant a patent to maximize their

expected utility, which depends on the structure of incentives they face. This point is a crucial

one, as it implies that examiners’ decisions in the model, and in the data, may not align with

decisions made solely on legal grounds.

2.1.3 Structure of Negotiations

Once the examiner has made their initial assessment of claim distances, the game moves to

the negotiation stage. This stage is a finitely repeated version of the stage game shown in the

“Negotiation” section of Figure 1. In each round of negotiation, the examiner chooses whether to

grant a patent or reject the patent application. If granted, all claims are awarded, and the game

moves to the renewal stage (described in Section 2.1.5). If the examiner rejects the patent, then

in the model, the examiner automatically and mechanically rejects all claims j whose assessed

distance is below the threshold.

After the examiner rejects the application, there is an exogenous probability that the invention

becomes obsolete. If obsolescence occurs, flow returns become zero permanently.5 Hence, if the

patent is rendered obsolete at any round, the applicant immediately abandons the patent appli-

cation and the game ends. We model obsolescence as a Markov process, with state variable ωr

equal to one if obsolescence occurs in or before round r and zero otherwise. Formally, ωr = 1,

then ωr+1 = 1 (1 is an absorbing state). Otherwise, if ωr = 0, ωr+1 is a Bernoulli random variable

with parameter P pre
ω . In the model, obsolescence is independent of all other random variables.

After the realization of obsolescence, the applicant decides whether to continue negotiations or

abandon the patent application. Abandoning ends the negotiation game. Continuing to the next

round (“fighting”) entails the applicant narrowing the scope of the claims that the examiner has

assessed to be too close to prior art (i.e., claims with assessed distance below the patentability

threshold), and then resubmitting the application. Narrowing involves increasing the padded

distance of the claim from prior art and, at the same time, reducing the padded value (see

Figure 2 for clarification). We treat the extent of narrowing for each such claim in round r as

5Obsolescence can arise from several sources, such as the arrival of a superior competitive invention, a negative

demand shock or high development costs that render commercialization unprofitable. The patent returns fall to

zero because the Patent Office publishes all applications, which undermines subsequent appropriation by trade

secrecy as an alternative.
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exogenous, denoted by ηr.
6

Once the applicant has narrowed, the negotiation proceeds to the next round, r+1. The value of

claims is now ṽr+1
j . The examiner reassesses the distance of each claim the applicant narrowed,

again using the prior art identified in their original search, obtaining a new distance assessment

D̂r+1
j (we formalize the determination of ṽr+1

j and D̂r+1
j at the start of Section 2.3). Once again,

on this basis, the examiner decides whether to grant or reject the patent. This process continues

until the examiner grants the patent or the applicant abandons. In the final round R, if the

examiner does not grant, the applicant must abandon.7

To illustrate how this negotiation structure and narrowing play out in practice, in Appendix B

we provide examples of two actual patents that went through multiple rounds, and highlight how

changes in the patent text reflect the narrowing of patent scope.

2.1.4 Negotiation Game Payoffs

Examiner Payoffs The examiner’s payoff for each of their actions consists of an extrinsic

incentive, which takes the form of examiner credits. The Patent Office utilizes a point system

that gives the examiner a specified number of credits for various decisions/outcomes at each

negotiation round. Different credits are awarded when the examiner grants/rejects the patent,

and also when the applicant abandons/amends the application. In practice, the examiner’s per-

formance is evaluated chiefly along two dimensions: the number of accumulated credits relative

to production targets and the timely management of their portfolio of applications (Foit, 2018).8

Bonuses are based on the extent to which the examiner exceeds their credit production target

(falling short triggers reviews and potential penalties). This bonus structure incentivizes exam-

iners to maximize the credits they obtain. In the model, we capture both dimensions of examiner

performance evaluation through, first, credits associated with their actions, and second, delay

costs that reflect the incentives for timely portfolio management. In what follows, we describe

6We could extend the model to allow the applicant to choose whether to narrow padded distance by η with

some probability or respond by arguing that the examiner is in error and not narrow at all. However, data on

patent word counts imply that this extension is empirically unimportant. To see this, we look at word counts on

patents granted with one rejection after publication and calculate the proportion of cases in which the applicant

resubmits an application with the same word count. This happens only 11% of the time, so we view the choice to

ignore the possibility of no narrowing as a simplifying assumption in the baseline.
7We limit to six rounds in the empirical implementation, as 96% of applications last at most six rounds.
8We abstract from the examiner’s intertemporal incentives that link different applications in their portfolio,

such as meeting quarterly targets. Instead, we focus on the interaction between the applicant and the examiner

on a specific application. A model in which examiners optimize decisions over all examinations in their docket is

not necessary to meet the aims of our model and would introduce substantial complications.
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these two components.

Let grGR(S, T ) denote the credits for granting a patent in round r for examiner with seniority S in

technology area T , grREJ(S, T ) the credits for rejecting the patent, and grABN (S, T ) the examiner

credits if the applicant abandons the patent. The examiner also receives a credit of grFIGHT (S, T )

if the applicant continues the negotiation (Appendix E provides details on credit schedule). All

of these credits decline with the examiner’s seniority level, S, and vary across technology areas,

T , presumably reflecting higher productivity and differences in the complexity of the technology,

respectively.9

The examiner’s payoff from granting a patent also includes a second component reflecting their

intrinsic incentive. This component derives from their level of intrinsic motivation, denoted by

the parameter θ. Intrinsically motivated workers incur a disutility from awarding patents con-

taining claims that do not meet the patentability standard, based on their assessment of claim

distances. This intrinsic motivation moderates any incentive to maximize credits by granting

patents prematurely. Formally, let Mr denote the number of claims in round r that the examiner

thinks are invalid, i.e., claims with D̂r
j < τ . The examiner’s intrinsic utility cost from granting

the patent is given by the function R(Mr, θ), which is increasing in both arguments and satis-

fies R(0, θ) = R(Mr, 0) = 0. For an examiner with any intrinsic motivation, granting a patent

that contains claims they believe are invalid goes against the organization’s mission statement,

thereby reducing the utility of granting.10

Putting the extrinsic and intrinsic components together, the stage game payoff to the examiner

from granting a patent in round r is

Gr = grGR(S, T )−R(Mr, θ). (1)

We do not include an intrinsic utility cost to the examiner from rejecting the patent or from the

applicant abandoning the patent. This exclusion follows from the fact that (i) the examiner’s

mandate is to reject the application if any claim is perceived to be invalid, irrespective of how

9For example, the most junior examiner gets 2.5 times as many credits for each action as the most senior

examiner, and an application in Computer Architecture Software and Information Security provides 56% more

credits than in Mechanical Engineering, Manufacturing and Products.
10 One might be concerned that our specification of intrinsic motivation also captures examiner career concerns

within the Patent Office. Their internal career prospects are supposed to depend on the frequency with which

they grant invalid claims (Foit, 2018). For each junior examiner, a review of at least one grant/rejection decision

per quarter is conducted by the supervising examiner. In addition, for the Office of Patent Quality Assurance, a

senior panel conducts “random reviews” of examiners’ decisions. However, these reviews are infrequent, do not

come with explicit punishments, and are frequently successfully appealed by the head examiner in the art unit.

12



many claims are valid, and (ii) the applicant always has the option to narrow the claims that

are too close to prior art. Hence, the examiner’s stage game payoff from rejecting a patent is

only the extrinsic incentive from the credit, grREJ(S, T ). Likewise, the immediate payoff to the

examiner from applicant abandonment is only grABN (S, T ).

There is an additional cost to the examiner if the applicant continues the negotiation to the next

round, which we call the “delay cost,” denoted π. Delaying creates pressure on examiners, as they

are evaluated, in part, on the effective and timely management of their portfolio of applications.

This parameter will also reflect the examiner’s productivity: more productive examiners incur

a greater opportunity cost of continuing to another round (in terms of earning credits on other

patent applications).

The structure of the examiner’s stage game payoffs implies that, in the face of delay costs,

examiners with insufficient intrinsic motivation may grant patents containing claims they believe

to be invalid. It is in this sense that examiners with grounds to reject patent applications may

go against the mandate of the Patent Office and grant a patent nevertheless.

Applicant Payoffs If the patent is granted in round r, the stage game payoff to the applicant

is V r−ϕiss−F iss, where ϕiss and F iss are the Patent Office and attorney issuance fees, respectively,

and V r is the expected net returns from owning the patent, which is a function of the flow returns

associated with each narrowed claim at the point of round r and the renewal decisions by the

applicant after grant. We derive the expression for V r in Equation (4) of Section 2.4, where we

analyze the model.

The applicant’s stage game payoff from abandoning the application is normalized to zero. If the

applicant fights, they incur two kinds of fighting costs: attorney fees for amending the application,

F amend, and a Patent Office fee, denoted ϕamend
r , which varies by round.

2.1.5 Patent Renewal

If the examiner grants the patent, we enter the “Patent Renewal” stage of the model, the final

stage of Figure 1. Our renewal model adapts Schankerman and Pakes (1986) (which studies

European patents) to the U.S. context, adding stochastic, post-grant obsolescence in addition to

deterministic depreciation. For a patent granted in round r, the returns for each granted claim

j start at ṽrj and depreciate at rate δ each period after the grant. With probability P post
ω , the

invention becomes obsolete, at which point all returns shrink to zero permanently. To maintain

the patent rights, at ages (i.e., years after grant) t = 4, 8, and 12, the applicant must pay

Patent Office renewal fees ϕrenewt , along with the associated attorney fees F renew to implement

patent renewal. The renewal decision occurs at the patent level, not the individual claim level.
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If renewed for the full term, the patent ends 20 years after the applicant applies, at which point

the invention enters the public domain.

2.2 Information Structure

Applicant At each stage of the negotiation, the applicant knows (i) the true distance of each

claim from prior art, D∗
j , (ii) the true private value of each claim, v∗j , (iii) the complete set of

attorney and Patent Office fees, (iv) the complete set of examiner credits across all rounds, (v)

their choice of padding, p, and (vi) the values of narrowing, ηr the examiner will require if their

claim is rejected.

Before applying for a patent, the applicant knows the set of examiners who might be assigned and

their characteristics (S, θ, π), but does not know which examiner the Office will assign to their

application. After the examiner is assigned, the applicant can calculate the examiner’s search

error ε exactly from the examiner’s report of their distance assessment. Finally, after applying,

the applicant knows the current and all prior realizations of obsolescence but does not know

future realizations.

Examiner The examiner does not observe either true claim distances D∗
j , actual padded claim

distances D̃j , true claim values v∗j , or the extent of padding p at any stage of the negotiation. At

all points of the examination, the assigned examiner knows (i) the applicant’s patent attorney

and thus their fighting costs, (ii) all prior and current realizations of obsolescence but no future

realizations, (iii) the structure of credits and Patent Office fees for the applicant, (iv) all of

their prior and current assessments of claim distance, D̂r
j ; and (v) the initial padded value of

all claims, ṽ1j (but not the constituent components p and v∗j ). All other model parameters are

common knowledge to the applicant and the examiner.

2.3 Simplifying the General Form

In this section, we address the informational challenge in the general form of the multi-round

negotiation model. In general, in these contexts one or more agents must form and update beliefs

on other agents’ types based on observed actions. To solve this problem, we derive conditions on

functional forms that obviate the need for belief updating.

For this task, we require a more general notation for narrowed padded values and narrowed

distance assessments. Denote a given vector of narrowing across all potential rounds by η =

(η1, η2, . . . , ηR), where R is the final round. The corresponding narrowed padded value of claim j

is given by ṽG(v
∗
j , p,η). The subscript G refers to the fact that ṽG is the most general functional

form for narrowed padded value, and we will provide more restrictive functional forms in our
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results that follow.

This notation is sufficiently general to cover narrowed padded values of each claim j in every

round r of negotiation—whether further narrowing is required or not—for any possible level of

narrowing. To see this, note that the initial padded value before any narrowing, ṽ1j = V(v∗j , p) is
equal to ṽG(v

∗
j , p,0) where 0 is the R-dimensional zero vector. If claim j requires no narrowing

after round one, then ṽsj = ṽ1j for all s ≥ 1. Otherwise, claim j is amended and its narrowed

padded value in round two is ṽ2j = ṽG(v
∗
j , p,η

1) with η1 = (η1, 0, . . . , 0). The values ṽrj are

defined analogously for r ≥ 3. A similar notation applies for the examiner’s assessment of claim

j’s narrowed distance, D̂G(D
∗
j , p, ε,η). Hence, the examiner’s initial assessment of distance for

claim j is D̂1
j = D(D∗

j , p, ε) = D̂G(D
∗
j , p, ε,0) and it evolves as narrowing proceeds, analogously

to padded value.

Under our information structure, the applicant does not need to form beliefs about examiner

characteristics or actions. The applicant knows all current payoff-relevant variables and can

calculate all future payoff-relevant variables.11 However, since the examiner does not observe

padding, true value, or true distance, the examiner cannot calculate future narrowed padded

values or future narrowed assessments of distance, which are the payoff-relevant variables for the

two agents. For example, since the examiner does not know p or v∗j , the examiner cannot forecast

ṽ2j = ṽG(v
∗
j , p,η) in the first round, even if they know ṽ1j and η. As a result, the examiner cannot

predict the applicant’s future actions that follow from their own decisions. In this context, the

examiner must formulate beliefs over padding as well as true distances and values of all claims,

and the examiner would need to update these beliefs at each round of negotiation based on the

applicant’s decision to continue fighting. Empirical implementation of such a general model is

virtually infeasible.

The issue we just described arises because we specify unrestricted forms for the narrowed padded

value, ṽG, and narrowed distance assessment function, D̂G. To solve the problem, we derive

restrictions on functional forms ṽG and D̂G under which the examiner does not need to form

beliefs. We begin by formalizing what it means for examiners not to require beliefs on the

11Note two additional points. First, we assume that the applicant and examiner never condition on payoff-

irrelevant variables. Second, the fact that the applicant can anticipate future narrowing by the examiner raises a

conceptual concern. The applicant could immediately narrow to the full extent required and avoid future fighting

costs and risk of pre-grant obsolescence. This matter mirrors issues with early dynamic bargaining models, which

could not generate negotiation in equilibrium precisely because players could anticipate future bargaining (e.g.,

Rubinstein, 1982). To remove this conundrum, one could introduce a stochastic element to future narrowing, but

this would significantly complicate implementation of the model. We thank a referee for pointing this out.
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applicant’s unobserved types. For any observed vector of narrowing η, the examiner can calculate

all future narrowed padded values, using only their observation on initial padded value, if there

is a function Wv such that

ṽG(v
∗
j , p,η) = Wv(ṽ

1
j ,η), (2)

for all (v∗j , p,η). Similarly, the examiner can calculate all possible future assessments of distance,

using only their initial assessment of distance, if there is WD such that

D̂G(D
∗
j , p, ε,η) = WD(D̂

1
j ,η), (3)

for all (D∗
j , p, ε,η). If the examiner can predict all future narrowed padded values and distance

assessments for a given narrowing vector, they will not require beliefs on the applicant’s types

because they can calculate all future values of payoff-relevant variables with the content of their

information set. Hence, the existence of Wv and WD satisfying Equations (2) and (3) defines our

condition for the examiner not to require beliefs.

By the definitions of initial padded value ṽ1j = V(v∗j , p) and of initial distance assessment, D̂1
j =

D(D∗
j , p, ε) it follows from Equations (2) and (3) that for the examiner not to need beliefs, ṽG

must be weakly separable in (v∗j , p) and η, and D̂G must be weakly separable in (D∗
j , p, ε) and

η. Hence, these separability conditions are necessary conditions to circumvent examiner beliefs.

While this result restricts the class of potential functions for the empirical implementation to

those weakly separable in narrowing, it does not tell us whether a specific choice of weakly

separable ṽG and D̂G will remove the need for beliefs.

However, Proposition 1 in Appendix C.1 shows that, under additional mild restrictions, weak

separability is not just necessary but also sufficient to characterize the class of functional forms

for ṽG and D̂G under which examiner’s beliefs are not required. Imposing the restrictions allows

us to find the subgame-perfect equilibrium by backward induction and to formulate an empirical

implementation of the model.12

The weak separability restriction implies that the marginal rate of substitution (MRS) between

the true initial claim value and padding in generating claim value is independent of narrowing.

Similarly, the condition implies that the MRS between true claim distance, padding, and examiner

error, in generating assessed distance, is independent of narrowing. This property implies that

the examiner cares about padded distance and its relationship to the patentability threshold, but

not about true distance or padding individually. This is consistent with the examiner’s mandate

12These restrictions ensure that there is an equilibrium not requiring beliefs in our setting. For a more general

approach to belief-free equilibria, see Ely, Hörner, and Olszewski (2005) and Hörner and Lovo (2009).

16



set by the Patent Office, which is to ensure that the inventive step as revealed in the padded

application is sufficient to be patented.

Finally, we highlight that while weak separability seems reasonable in our context, it may not

apply in other contexts. As an example, consider the case of a referee screening a scientific article.

The referee presumably cares about the true scientific contribution of the article relative to prior

art (D∗), independently of the extent to which the contribution is padded by the author. As

stated above, this would violate the separability restriction, which rules out the referee caring

about D∗ by itself.

2.4 Analysis of the Model

Renewal Decisions We characterize equilibrium path actions using backward induction, start-

ing with the renewal decisions. The applicant decides whether to renew a patent based on the

expected returns from retaining patent rights. Renewal decisions are made at ages 4, 8, and 12.

The expected returns of holding the patent from age t1 to t2 are13

EωVt1,t2 =

t2∑
t=t1

(1− δ)t
[
β(1− P post

ω )
]t−t1

∑
j

ṽj .

Suppose the application is granted in round r. Then, conditional on surviving to age 12, the

applicant renews at age 12 if V r
12 := EωV12,20−r − ϕrenew12 − F renew > 0. The applicant renews at

the age eight if V r
8 := EωV8,11 − ϕrenew8 − F renew + I12β

4(1− P post
ω )4V r

12 > 0, where It is equal to

one if the applicant thinks they will renew at age t, and zero otherwise. An analogous decision

rule holds for renewal at age four, which defines V r
4 . Finally, we define the ex post expected net

benefits from patent rights, when granted in round r, as

V r = EωV1,3 + I4β
4(1− P post

ω )4V r
4 . (4)

Stage Game Decisions Let xra and xre denote the actions by the applicant and examiner at

round r of the negotiation if the invention is not obsolete. The value function for the examiner

after rejecting in round r, denoted W r
e , satisfies

W r
e =

g
r
ABN If xra = ABN or ωr = 1

grFIGHT + β
[
−π +max

{
Gr+1, gr+1

REJ + Eωr+1

(
W r+1

e

)}]
Otherwise

where, as a reminder, the examiner’s payoff from granting G is defined in Equation (1). The

examiner grants in round r, that is, xre = GR, if Gr > grREJ + Eωr (W
r
e ). This inequality says

13We use the notation Eω to denote expectations taken over the vector of obsolescence shocks that are not yet

realized. The notation Eωr refers to an expectation over ω only in round r.
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that the examiner grants if the period payoff from granting exceeds the credits from rejecting

plus the expected continuation value from the point of having rejected in round r.

We next define the value function for the applicant upon being rejected in round r, denoted

W r
a . If the invention becomes obsolete, so that ωr = 1, then W r

a = 0. Otherwise, we have that

W r
a = max{0,Ufight

r+1 }, where:

Ufight
r+1 = −ϕamend

r+1 − F amend

+ β
(
I(xr+1

e = GR)
[
V r+1 − ϕiss − F iss

]
+ I(xr+1

e = REJ)Eωr+1W
r+1
a

)
,

I(A) is the indicator function, equal to one if statement A is true and zero otherwise, and V r+1

defines the ex post, expected net benefits from patent rights if granted in round r + 1, as given

in Equation (4). The applicant’s decision rule after rejection follows directly from the statement

of the value function above (fight if and only if Ufight
r+1 > 0).

Choice of Padding and Decision to Apply The applicant decides the initial level of padding

without knowing the identity of the examiner who will be assigned to the application. The appli-

cant chooses initial padding to maximize expected utility less legal costs, with the expectation

taken over the roster of potential examiners e = 1, . . . , Ě (random assignment of applications

implies an equal chance of each examiner in the relevant technology center), over the examiner

error ε ∼ Ge,ε(·), and over potential obsolescence of their invention. Formally, the applicant’s

optimal padding choice p∗ maximizes the ex ante value of patent rights, Γ(p):

Γ(p) =
1

Ě

Ě∑
e=1

[∫
Z0
a(e, ε, p) dGe,ε(ε)

]
− ϕapp − F app(p),

where the expected utility for the applicant, before applying, from padding choice p, when as-

signed examiner e who makes error ε, is

Z0
a(e, ε, p) = 1(x1e = GR)[V 1 − ϕiss − F iss] + 1(x1e = REJ)Eω1W

1
a .

Finally, because the outside option of not patenting is normalized to zero, the applicant applies

if the expected utility of the subsequent negotiation game is nonnegative:

Γ∗ := Γ(p∗) ≥ 0. (5)

3 Data and Descriptive Analysis

3.1 Data Sources

Patent Claims Text We exploit the USPTO Granted Patent Claims Full Text Dataset, which

contains the text for over 105 million claims in U.S. patents granted between 1976 and 2020. In
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Section 3.2, we describe how we use these data to train an algorithm to construct a distance

measure for granted claims.

Prosecution Rounds Estimating a model of the patent prosecution process over multiple

rounds requires comprehensive round-level data on the patent process. We use the Transactions

History data in the USPTO Patent Examination (PatEx) Research Dataset to create a dataset

on the round-by-round evolution of patent applications. For all patent applications, these data

include examiner and applicant decisions at each examination round.

We match the round-level data to two datasets on patent applications. The first is the Application

Data in the PatEx Dataset, which contains information on the applicant and examiner, the

patent art unit (narrow technology classifications), and a binary indicator of the size of the

applying firm (below or above 500 employees). We aggregate art units into the broader technology

classifications used by the USPTO, known as “technology centers.” Second, since we focus on

novelty/nonobviousness rejections, we require data on the types of rejections of each claim.

These data are available from the USPTO Office Action Research Dataset for Patents. We use

applications in these data between 2011 and 2013. After merging datasets, we obtain a sample

of approximately 55 million claim-round decisions across 20 million claims.

Legal Fees We use data from the 2017 American Intellectual Property Law Association

(AIPLA) Report of the Economic Survey. The survey reports statistics of the distribution of

attorney fees for different tasks, such as preparing and filing an application, paying renewal fees,

and amending applications. The statistics are split by three broad technology areas (biotechnol-

ogy/chemical, electrical/computer, and mechanical). We use these data to estimate the distribu-

tions of attorney costs for each patent application, adjusted for inflation.

Examiner Credit Adjustments We obtained data on examiner seniority from Frakes and

Wasserman (2017), which provides a panel of General Schedule (GS) grades for examiners over

time. Using this dataset, we calculated the seniority of the examiner at the time of each appli-

cation. Finally, we obtained (unpublished) information on examiner credit adjustments from the

Patent Office at the highly disaggregated US patent classification level, which we aggregated to

the technology center level in our data.

3.2 Claim Distance Metric

The distance measure is the cornerstone of our empirical analysis of patent screening. It is

essential for evaluating the performance of the public screening agency, and its use in a structural

modeling context is novel.
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Our approach calculates distances between claims by representing the text of each patent claim

as a numerical vector and computing a metric over that vector space. Previous studies have

used variations of the standard bag-of-words method to represent patent claim text as a numer-

ical vector (Kelly, Papanikolaou, Seru, and Taddy, 2021). This approach, which looks for word

overlap, has two significant limitations: it ignores word order and semantics. Word overlap is

particularly troublesome in the context of patent applications, as attorneys strategically seek to

describe the invention differently from the prior art.

We adopt the Paragraph Vector approach of Le and Mikolov (2014), which improves the bag-

of-words approach by training a neural network (in our case, on patent claim texts after 1976)

to “learn” the meaning of words by studying the context in which they appear and forming a

vector representation for each word, picking up the meaning of paragraphs as a by-product. This

approach is particularly suited for highly specialized texts such as legal documents and patents.14

Our approach involves four steps. First, we standardize the text and remove words that do not

convey information. Second, we use the paragraph vector approach to represent the text of a

patent claim as a numerical vector. We implement the paragraph vector approach (Řeh̊uřek and

Sojka, 2010). We train the model to create a 300-dimensional dense vector representation of each

independent claim.15 We use the distributed memory method, which learns to predict a target

word given the words in its context.

The third step involves taking every granted patent claim vector and calculating its distance to

every previously granted claim. We use cosine similarity (CS) and angular distance, which are

standard in the natural language processing literature. We calculate the angular distance metric

between non-negative vectors x and y as AD(x, y) = 2 · arccos(CS(x, y))/π, which provides a

normalized distance on the interval [0, 1]. The final step uses this distance measure to identify

the closest, previously granted claim to the focal claim, which is the relevant measure in the

model. For robustness, we experiment with using the mean of five closest distances. The resulting

distribution of distances is similar.

14At the time this paper was developed, this was the state-of-the-art approach, but there is a fast-moving

frontier. See Ash and Hansen (2023) for details on text algorithms and Ganguli, Lin, Meursault, and Reynolds

(2024) for a recent study that compares various algorithms.
15The distance algorithm we train is unable to assess the distance between chemical formulas and also drawings,

which play an important role in patents in technology center 1600 (“Biotechnology and Organic Fields”). Hence,

our analysis using the distance metric excludes this technology center.
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3.3 Descriptive Statistics

Table 1 presents summary statistics of the data. First, 63% of applications result in a patent being

issued. Second, the mean duration of patent prosecution is 2.51 years, and the mean number of

rounds is 2.17, but there is substantial variation. This fact implies that some applications involve

lengthy negotiation between the applicant and examiner. Third, while the modal number of

independent claims on an application is 3, the number of claims varies, with a 99th percentile of

9. This fact holds across technology areas; 97% of the variation in the number of claims is within

technology centers. Lastly, in the sample, 25% of applications are filed by firms with fewer than

500 employees (“small entities”).

Further empirical features are worth noting. First, 43% of granted patents are renewed to the

statutory limit, and only 14% are not renewed at the first renewal date (age four). Second, as

shown in Appendix Figure A.1, the distribution of granted claim distances is bell-curved with a

left skew.

The majority of examiner decisions on claims are rejections: in the first round, the examiner

rejects a mean of 83% of an application’s independent claims. The most common outcome in the

first round is for the examiner to reject all claims, but 11% of applications are granted in the first

round, in which case the examiner rejects no claims. This bimodality is similar across technology

areas, with 97% of the variation in round-one rejection rates occurring within technology centers.

These facts suggest that distances to prior art are correlated across claims within an application,

and this is confirmed by the fact that 83% of the total variation in claim distances is between

patent applications, rather than within applications. Further, the distributions of claim distances

are similar across technology areas, with 98% of the variation in distances within technology

centers.

We complement these summary statistics with regression analysis, documented in Appendix

Table A.1. Patent grant rates in our large sample vary sharply across technology centers and

examiner seniority, with senior examiners granting more often. Also, the frequency of multi-

round negotiation is much lower for senior examiners, it varies across technology centers, and

small entities are less likely to negotiate. Finally, we decompose the variation in examiner-specific

outcomes (such as their grant rate) into within- and between-technology center-seniority pairs:

78% of the variation in examiner grant rates and 82% of the variation in the average number of

rounds is within technology center-seniority pairs.

These descriptive findings highlight the heterogeneity in the sample and confirm that the pre-

dominant variation in outcomes is within technology areas, not between them. In the empirical

implementation of the model, we incorporate sources of patent- and claim-level heterogeneity to
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Table 1. Summary Statistics

Variable Mean Median S.D. 1% 99%

Application Granted 0.63 1.00 0.48 0.00 1.00

Years of Prosecution 2.51 2.41 1.04 0.58 5.50

Negotiation Rounds 2.17 2.00 1.18 1.00 6.00

Independent Claims 2.59 2.00 1.75 1.00 9.00

Small Entity 0.25 0.00 0.43 0.00 1.00

Notes: “Small Entity” is equal to 1 if the applying firm has fewer than 500

employees. “Application Granted” is equal to 1 if a patent is issued.

account for the variations in the data.

3.4 External Validation of the Distance Measure

Since there is no ground truth (non AI-based) data on the padded distance between claims and

prior art, we cannot evaluate the performance of our distance algorithm on an out-of-sample

test set. Instead, we provide two external validation tests, which show that our distance measure

produces reasonable results in contexts independent of its construction.

Selection Into PTAB Challenges We use data from the Patent Trial and Appeal Board

(PTAB) in an external validation test of our claim distance measure. The PTAB is an ad-

ministrative mechanism within the USPTO that serves as a second layer of post-grant screen-

ing. Third parties can initiate challenges against granted claims on grounds of lack of nov-

elty/nonobviousness, which are adjudicated by a panel of senior examiners.

The first validation test compares the distance to prior art for patents challenged in the PTAB

with patents not challenged. On average, we would expect claims in patents challenged in the

PTAB to have smaller distances to prior art than those not involved in challenges. To test this

hypothesis, we take our sample of granted claim distances for patents applied for between 2011

and 2013 and locate all claims in the sample that feature in a PTAB challenge. Figure 3a plots

the empirical CDFs separately by those challenged and not challenged in the PTAB. The figure

confirms that unchallenged claim distances stochastically dominate PTAB claim distances.

As further evidence, the first two rows of Table 2 present the percentage of PTAB and non-PTAB

claims with distance to prior art below the patentability threshold, far above the threshold (more

than two standard deviations), and especially far above the threshold (more than three standard
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Figure 3. External validation distributions
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deviations). Claims in patents challenged at the PTAB (5705 in total in our merged sample) are

twice as likely to be below the threshold (p < 0.001) and are also much less likely to be far above

the threshold.16

National Inventors Hall of Fame (NIHF) The USPTO and National Inventors Hall of

Fame maintain a record of about 650 inventors whose inventions are deemed to represent “world-

changing technological achievements.” As such, we would expect NIHF patents to be more distant

from prior patents, and well above the patentability threshold. To implement the comparison,

we constructed the distance metric for all claims in NIHF patents.

To begin, Figure 3b presents the empirical CDFs of claims for NIHF and non-NIHF patents. The

plots confirm that claim distances in NIHF patents strongly stochastically dominate those for

non-NIHF claims. A regression of the log of claim distance on a dummy for NIHF, controlling

for grant-year and technology-center dummies, shows that the distance is 14% larger for claims

in NIHF patents, on average (p < 0.001).

Since NIHF patents represent major technological achievements, the most appropriate validation

test in the NIHF context concerns the right tail of distance distribution. The evidence in the final

two rows of Table 2 confirms expectations. Seventy-two percent of claims in NIHF patents are

16These findings also hold when we control for the technology area and granting year: regressing the log of claim

distance on a dummy for a PTAB challenge and fixed effects for grant-year and technology center shows that

claims in PTAB challenges are 3.23% closer to prior art than those not challenged (p < 0.001).
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Table 2. External Validation of the Distance Measure

% D̃ Below τ % D̃ Two S.D. Above τ % D̃ Three S.D. Above τ

PTAB 19.09 16.79 0.09

Non-PTAB 8.67 20.99 0.50

NIHF 6.80 71.60 42.80

Non-NIHF 8.70 7.85 0.01

Notes: All differences between NIHF against non-NIHF and PTAB challenges against non-challenged are

significant with p-value less than 0.001.

more than two standard deviations above the threshold—nine times more than the non-NIHF

equivalent of 8%—and 43% of claims in NIHF patents are more than three standard deviations

above the threshold, compared to 0.01% of those claims for non-NIHF patents. Finally, claims

in NIHF patents are 22% less likely to be below the threshold, compared to other those outside

of NIHF patents. While around 7% of claims in NIHF patents are below the threshold, there is

no reason to expect that every claim in an NIHF patent should be above the threshold, even if

the patent as a whole (or specific claims in it) represent a significant technological achievement.

This evidence confirms that our distance measure is an informative signal of the padded distance

between claims and the prior art. Of course, we cannot rule out that the distance measure may

still contain some measurement error arising from the natural language processing algorithm.

This feature is not specific to our context; it arises in any study that uses AI-based outputs as

data.

4 Empirical Implementation of the Model

4.1 Functional Forms and Distribution Choices

This section describes our functional form and distribution choices. Appendix Table A.2 sum-

marizes all parameters, along with associated distributional assumptions.

Functional Forms

Before providing our functional form choices, we emphasize that some key objects of interest—

true claim distance, true claim value, and padded claim value—are not observable to the econo-

metrician. This challenge means that we cannot ground our choice of functional forms using

external data on these objects. Instead, we conduct extensive robustness checks of our functional
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form choices, detailed after estimation in Section 5.3.

Padded Distance As described in Section 2.3, we require two key functions: a first,D(D∗
j , p, ε),

that maps padding, true distance, and examiner search error into initial assessed padded distance,

and a second, WD(D̂
1
j ,η), mapping the examiner’s assessment of initial claim distance and the

vector of narrowing into their assessment of narrowed padded distance. For the first, we specify

the initial padded distance as D̃(D∗
j , p) = D∗

jp
−1 in the baseline and assume a multiplicative

examiner error, so that the assessed distance is D(D∗
j , p, ε) = D∗

j εp
−1. We interpret the examiner

error as a proportion of the initial padded distance (e.g., ε = 1.1 represents a 10% positive error).

For the second function (the examiner’s distance assessment after r degrees of narrowing), we

use the form D∗
j εp

−1/ (
∏r

s=1(1− ηs)) This form is weakly separable in assessed distance and

narrowing, as required to ensure the examiner does not need to update beliefs (as discussed

in Section 2.3 and proved in Proposition 1 in Appendix C.1). In the baseline model, we use

constant narrowing over rounds, ηs = η for all s, simplifying the expression to D∗
j εp

−1/ (1− η)r.

Our results are robust to more demanding specifications that allow narrowing to vary across

rounds (see Section 5.3).

Padded Value Analogous to padded distance, as described in Section 2.3, we require two func-

tions for padded value: one mapping padding and true value into initial padded value, V(v∗j , p),
and a second function mapping the applicant’s initial padded value and narrowing into a nar-

rowed padded value, Wv(ṽ
1
j ,η). For the first function, it is reasonable to assume that V exhibits

super-modularity (complementarity) in padding and true value, hence we start with a Cobb-

Douglas form: ṽ1j = V(v∗j , p) = v∗Υj pζ . Because padded value is unobservable, we can rescale it

and use v∗χj p, where χ = Υ/ζ. Moreover, since we will assume that true claim value is log-

normally distributed (see “Distributions” below), we can set χ = 1 without loss of generality

and arrive at the choice of pv∗j for padded value.17 This choice makes padding p a proportional

increase in value. Finally, as with distance, we specify padded value for a claim narrowed for r

times as pv∗j
∏r

s=1(1− ηs), which reduces to pv∗j (1− η)r under constant narrowing.

Legal Costs of Padding The cost of padding in terms of attorney fees is increasing and

symmetric in the absolute value of padding. We specify F app(p) = fapp(1+ | p− 1 |) where fapp

is the application drafting fees per unit of padding. The idea is that it takes the attorney longer to

draft an application that meets the required patentability standards when there is either positive

17If v∗j ∼ LN(µv, σ
2
v), then v∗χj ∼ LN(χµv, χ

2σ2
v), so estimates of the claim value parameters contain χ.
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or negative padding.18

Intrinsic Motivation The model formulates the intrinsic motivation utility cost to the exam-

iner as an increasing function R(Mr, θ), where Mr is the number of claims the examiner grants

that they believe to be invalid (i.e., below the patentability threshold). Our baseline specifica-

tion makes this utility cost a function of the proportion of such invalid claims in the application:

R(Mr, θ) = θMr
M0

, whereM0 is the number of claims in the application. In robustness analysis, we

experiment with an alternative specification, R(Mr, θ) = θMr. There are no theoretical grounds

for preferring one specification over the other, but using the proportion fits the data better.

Distributions

Applicant Variables We start by discussing true unpadded distances, D∗
j , and true unpadded

flow returns, v∗j . We assume that D∗
j and v∗j are independent. Given that both these variables are

unobservable in our data, it is unclear how to identify their correlation or test this simplifying

assumption. We specify true claim distance D∗
j as Beta distributed with parameters (αD, γD).

The Beta distribution is a natural choice as it provides a flexible distribution on the interval [0, 1],

which coincides with the domain of our distance metric. Further, we use a multivariate normal

distribution copula to allow for correlated claim distances within an application (for details, see

notes to Appendix Table A.2). Motivated by Schankerman and Pakes (1986), the log of initial

claim flow returns is assumed to be normally distributed with mean µv and variance σ2v .

Finally, all attorney legal fees (F amend, F iss, F renew, and fapp) are log-normally distributed.

For amendment, F amend, and application drafting per unit padding, fapp, we specify different µ

and σ parameters for simple applications and complex applications in chemical, electrical, and

mechanical fields. We focus our discussion on the estimates and robustness of simple application

attorney costs, with associated parameters µsimple
fapp and σsimple

fapp .19

18Overstating the scope of the invention involves deciding on what elements to add as well as crafting the

application to avoid the risk of not meeting the enablement requirement. Understating the patent scope involves

deciding what elements to drop while still adequately revealing the invention to allow replication.
19We have data on the quantiles of the distributions of amendment, maintenance, and issuance hourly fees

charged by lawyers. Since these moments directly correspond to the elements of applicant fighting costs and do

not identify any other parameters in the model, we estimate the means and variances of the log of fighting costs

using an external two-step generalized method of moments estimation procedure for each of these three types of

attorney costs. This does not apply to application costs, which are linked to padding, and thus are estimated

within the model.
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Examiner Variables Intrinsic motivation is log-normally distributed, and we allow for dif-

ferent µ parameters for junior (pre-GS-14) and senior grade examiners, denoted µJθ and µSθ ,

respectively. We constrain the σθ parameter of the log-normal distributions to be the same for

juniors and seniors, but this does not imply equal variances (only equal coefficients of variation).

In the baseline, we treat examiner delay costs, π, as constant, but in the robustness analysis, we

allow this parameter to vary by round and examiner seniority.

Examiner errors are normally distributed, with a mean and variance that are inversely related to

the degree of intrinsic motivation. We microfound the relationship between moments of examiner

search errors and intrinsic motivation in Appendix D. The basic idea is as follows. The examiner

decides how intensively to search the prior art. Search is costly but increases the probability of

uncovering relevant prior art. The utility cost of a search error increases with intrinsic motiva-

tion. Thus, the examiner’s optimal search intensity rises, and errors decline, with their intrinsic

motivation. As a result, intrinsic motivation affects endogenous outcomes through two channels:

(i) making conscious decisions to make errors more costly in the examiner’s payoff function, and

(ii) intensifying optimal search. Consistent with the microfoundations, we specify the error mean

as 1+1/(ϱθ) and the variance as σ2ε/θ. Because θ is log-normally distributed, ϱ = 1 without loss

of generality.20

4.2 Estimating the Distance Threshold

We first detail how we estimate the distance (patentability) threshold τ̂ and then describe the

formal conditions under which it is a consistent estimator of the true threshold, τ . Estimation is

external to the model, using only observations on claim distances and examiner grant decisions.

For every examiner e, we calculate the minimum value of the granted (padded) distances among

claims they grant in all years in our sample. We denote this quantity by τe = minj∈MGR
e

D̃j ,

where MGR
e is the set of claims granted across all applications by examiner e and D̃j is the

narrowed padded distance at the point of grant, as we measure with our text-based distance

metric. We estimate the threshold as τ = maxe τe. The intuition for the estimator is as follows.

If an examiner is infinitely intrinsically motivated and does not make errors, they would never

grant a claim with distance below the true threshold, so the minimum distance of their granted

claims will, in the limit, be τ . However, for all other examiners, the minimum distance of their

granted claims will, in the limit, fall below τ , whether because they choose to grant below the

threshold or because they make an assessment error.

20If θ ∼ LN(µθ, σ
2
θ), then ϱθ ∼ LN(µθ + ln(ϱ), σ2

θ) for ϱ > 0.
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Proposition 2 in Appendix C.2 provides the formal conditions for consistency of τ̂ . The key

conditions are: first, that examiner errors are normally distributed with a mean that converges

to one and a variance that converges to zero, as the level of intrinsic motivation converges to

infinity; and second, that there is at least one examiner whose intrinsic motivation is sufficiently

large.

We have already assumed the normality of examiner errors in Section 4.1. The requirements

on the asymptotic value of the mean and variance of examiner errors are consistent with the

microfoundations in Appendix D and our empirical specification in Section 4.1. While we cannot

directly test this assumption because intrinsic motivation is not directly observable, we are able

to provide evidence consistent with it.

In Appendix D, we show that an examiner with higher intrinsic motivation invests more time in

search and evaluation for any given patent, and so makes fewer examination decisions. Thus, the

assumption implies that examiners who complete fewer decisions should exhibit a lower mean

and variance of examiner errors. We compute the mean and standard deviation of the size of

type 1 errors (grants of invalid claims) by junior and senior examiners, where the size of the error

is the difference between the estimated threshold and the distance of incorrectly granted claims.

Since examiners complete 39% more examination rounds on average as a senior than a junior,

we should find that the mean and standard deviation of the type 1 errors are higher for seniors

than juniors. The evidence is consistent with this: the mean is 11% higher (5.69% vs 5.13%),

and the standard deviation is 3% higher (5.50% vs 5.32%) for senior examiners. Of course, one

might be concerned that senior examiners are more productive and, on this account, less prone

to errors. However, this would make our test conservative and strengthen the conclusion.

Finally, we compute the distance thresholds separately for each technology center. Since the

inventive step is based on statutes and judicial decisions applicable to all technology fields, it is

reassuring that our estimates of the threshold are very similar across technology centers, ranging

from 0.47 to 0.48, on the [0, 1] interval of the distance metric (and Beta distribution).

4.3 Model Estimation and Identification

We first summarize the model variables that are observable in the data. For the applicant, we

observe the number of claims, (moments of) fighting costs, abandonment/fighting decisions by

round, padded distances at grant, and renewal decisions. We do not observe pre- or post-grant

obsolescence events, claim values, unpadded distance, narrowing, or padding. For the examiner,

we observe seniority, technology center, credits, application grants/rejections by round, claim

rejections by round, and examiner decision errors (based on our estimation of the patentabil-
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ity threshold). We do not observe examiners’ intrinsic motivation θ, delay costs π, or distance

assessment errors ε.

We estimate the model using simulated method of moments (SMM), minimizing

(m(ψ)−mS)
′Ω (m(ψ)−mS) ,

where m(ψ) is the vector of simulated moments computed from the model when the parameter

vector is ψ, mS is the vector of sample moments, and Ω is a weight matrix.21 The number of

available moments in the model far exceeds the number of parameters. To select our preferred

subset of moments for estimation, we followed a data-driven methodology based on the sensitivity

of parameter estimates to the inclusion of specific moments (described briefly below, and in

Appendix F). The procedure pruned the set of moments to 46 that assist in estimating the

parameters.

The selected moments corresponding to examiner outcomes are the proportion of applications

granted by seniority and round, standard deviation of examiner rejection rates by seniority, the

mean and standard deviations of the size of type 1 errors by seniority, and the proportion of

patents granted containing an invalid claim by seniority and round. The moments corresponding

to applicant outcomes are the proportion of abandonments by seniority and round, renewal rates,

means and standard deviations of granted claim distances by grant round, means and medians

of legal application fees by technology class, and the 75th and 90th percentiles of the distribution

of initial returns from patents rights in the U.S., which we construct by estimating an external

patent renewal model (Bessen, 2008).

4.3.1 Sensitivity Analysis

As is common with complex nonlinear models, we cannot prove non-parametric identification

of the model primitives or point identification of our parameters. Instead, we implement the

approach developed by Andrews, Gentzkow, and Shapiro (2017), which proposes a sensitivity

matrix that quantifies how changes in the value of a moment affect the estimates of each param-

eter. In our setting, the sensitivity matrix is Λ = (M′ΩM)−1M′Ω where M = ∂m(ψ)/∂ψ is the

Jacobian of the simulated moments, which we evaluate at our estimates. The element Λij reflects

how changes in the value of the moment in column j affect the estimate of the parameter in

row i. Because our moments and parameters are not on the same scale, we convert the elements

21We use a diagonal weight matrix that transforms moments to a uniform scale. We cannot use the optimal two-

step procedure because we do not have application-level data on fighting costs required to compute the correlation

between fighting cost moments and others.
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to elasticities to make them comparable and normalize the sensitivity elasticities by the sum of

their absolute values across all moments. After normalization, matrix elements reveal the relative

importance of each moment as a source of variation for estimating a given parameter.

The results show that most parameter estimates are driven primarily by a few key moments.

For 18 of the 20 parameters in the model, at most three moments account for over half of the

parameter total sensitivity. Further, for 13 of the parameters, over half of the total sensitivity

is accounted for by one or two moments. For 10 of the parameters, two moments account for

more than 75% of the sensitivity. Moreover, data moments that materially affect at least one

parameter (≥ 20% of their sensitivity) tend to move only one or two parameters, with only one

moment materially affecting more than two parameters.

We next show that the specific small set of moments that drive each of the parameters has

an intuitive interpretation. We highlight the primary moments driving parameters of interest,

together with brief intuition.

(i) The parameters of the distribution of initial claim values (µv, σv) are driven almost en-

tirely (94% and 95%) by the 75th and 90th percentiles of the distribution of initial returns

to patents at grant, as externally estimated from a patent renewal model. These percentile

moments drive only µv and σv. Intuition: Higher percentiles of the patent value distribu-

tion for those patents granted is most naturally achieved through higher initial claim flow

returns.

(ii) The distance distribution parameters, (αD, γD), are primarily driven by the mean and stan-

dard deviation of granted claim distances (42% and 52%, respectively). Intuition: Observed

claim distances are clearly determined by unpadded claim distances.

(iii) Applicant fighting cost parameters for each technology area are driven almost entirely by

the mean and median of relevant attorney fees of the corresponding fighting cost (varying

between 82% and 98%, depending on technology area), and fighting cost moments drive

only their corresponding fighting cost parameters.

(iv) The narrowing parameter, η, is driven primarily by abandonment rates (29%) and the error

rates (26%). Intuition: Higher abandonment is generated by higher narrowing requirements,

and larger errors can be explained by less narrowing of invalid claims in the screening

process.

(v) The intrinsic motivation parameters (µJθ , µ
S
θ , σθ) are driven chiefly by the mean and stan-

dard deviation of granted claim distances (57%, 67%, and 46%, respectively) and also by

examiner errors (22%, 14%, and 14%, respectively). Intuition: A lower level of granted claim
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distance would manifest when examiners are more willing to grant invalid claims, as is the

case with lower intrinsic motivation; more examiner errors will occur when examiners have

lower intrinsic motivation.

(vi) The post-grant obsolescence probability, P post
ω , is driven primarily by the four patent re-

newal moments, which account for 89% of the sensitivity. Intuition: Higher attrition at

early renewal stages will come about with more frequent post-grant obsolescence (too high

post-grant obsolescence is ruled out by the fact that nearly 50% of patents are renewed for

the full term).

(vii) The pre-grant obsolescence probability, P pre
ω , is driven mainly by the abandonment mo-

ments (42%) Intuition: Through backward induction logic, applicants that foresee their

abandonment in latter rounds will abandon immediately. Hence, the only way to generate

higher abandonment rates after round one is through increased pre-grant obsolesence.

(viii) For the delay cost π, the dominant moment is type 1 error rates (50%). Intuition: Higher

grant rates of invalid patents would come about from examiners facing increased costs of

rejecting applications that incentivize grants of invalid applications.

(ix) The examiner error variance parameter, σε, is driven by error moments (23%) and the mean

and standard deviation of granted claim distances (29%). Intuition: Higher error moments

are generated by increased examiner search error; higher variation in granted padded claim

distances result from increased examiner search errors that subsequently lead to increased

granting of invalid patents in earlier rounds.

5 Empirical Results and Robustness

5.1 Parameter Estimates

Table 3 presents our main parameter estimates for the applicant (Panel A) and examiner (Panel

B). We report bootstrapped standard errors, which are negligible due to the large number of

observations used to compute our data moments.

Applicant Parameters We estimate the per-round proportion of narrowing by the examiner

as 36% per round. Thus, for a claim granted in the mean number of rounds (2.08), screening

reduces the property rights granted to about 60% of what was initially sought. Therefore, the per-

centage of applications eventually granted, which has nearly reached 70% in the U.S., overstates

the extent of property rights actually obtained by inventors.

Our estimates of the distribution of claim distance imply that 81% of application claims have
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Table 3. Parameter Estimates

Parameter Symbol Estimate S.E. (×10−3)

Panel A: Applicant

Per-round narrowing η 0.36 0.05

Initial distance alpha αD 3.88 0.68

Initial distance gamma γD 7.01 1.30

Initial returns log-mean µv 9.51 0.94

Initial returns log-sigma σv 1.13 0.35

Pre-grant obsolescence P pre
ω 0.17 0.10

Post-grant obsolescence P post
ω 0.04 0.03

Simple application fighting cost log-mean µsimple
fapp 8.69 2.78

Simple application fighting cost log-sigma σsimple
fapp 0.85 3.58

Panel B: Examiner

Junior intrinsic motivation log-mean µJθ 4.02 0.76

Senior intrinsic motivation log-mean µSθ 2.61 0.45

Intrinsic motivation log-sigma σθ 1.00 0.33

Delay cost π 1.29 2.69

Error standard deviation constant σε 0.16 0.19

Notes: This table provides the model parameters. Standard errors are bootstrapped. Table A.3

provides application attorney cost parameters by technology area.

initial distances below the threshold. Nonetheless, patent prosecution substantially narrows ap-

plications so that most are valid when eventually granted (see Section 5.2).

The distribution of initial returns from an unpadded claim is highly skewed, consistent with

previous literature: the mean claim value is $30,554, while the median is $16,094 (both 2023

USD). The median initial unpadded returns from a patent application are around $50,000 (2023

USD). Our estimates are broadly in line with previous estimates of U.S. patent values (Bessen,

2008), though the comparison is not perfect.22

22The comparison is not exact because we estimate the distribution of initial returns for all applications and

unpadded claims, whereas the estimates in the literature are for padded value of granted patents. We are the first

to distinguish between padded and unpadded value.

32



Pre-grant obsolescence is high, at 17% per negotiation round (typically one year long). The post-

grant obsolescence rate is 4% per year, which is similar to estimates in the literature (Pakes, 1986;

Lanjouw, 1998). Pre-grant obsolescence is higher for two reasons: applicants are more likely to

discover their invention is obsolete earlier in its life cycle (e.g., finding out that commercialization

costs make the project unviable), and abandonment during prosecution is driven by obsolescence,

making granted patents a selected sample.

Applicants bear high legal costs for drafting an application. Application costs are as high as

$41,690 (2023 USD) at the 90th percentile of padding and fighting costs. Appendix Tables A.3

and A.4 contain parameter estimates of other attorney costs by technology area. These legal

costs constitute part of the social costs of patent screening.

Examiner Parameters Our estimates indicate a high degree of intrinsic motivation, but with

substantial variation across examiners: the estimated value of σθ implies a coefficient of variation

of 131%. Junior examiners are more intrinsically motivated than seniors: the median junior

examiner is four times more motivated than the median senior, but there is also considerable

variation within each group. Two countervailing forces drive the relationship between intrinsic

motivation and seniority. Senior examiners should have lower intrinsic motivation if they become

“jaded” with experience, but selection implies that less motivated examiners are more likely to

move to the private sector to receive higher remuneration. Our estimates suggest that the jading

effect is stronger than the selection effect.

Intrinsic motivation utility costs are large relative to extrinsic rewards for both seniority groups.

To illustrate, for a junior examiner (GS-9) in the chemical technology center with the median

level of intrinsic motivation, the utility cost for knowingly granting a patent with all claims invalid

is 2.01 raw credits (not normalized for seniority and technology area), which is equivalent to the

credits the examiner gets from granting a patent. By contrast, the estimated examiner delay costs

of going to another round are small. The maximal delay cost across all examiner seniorities and

technology centers is 0.09 raw credits per round. This finding suggests that pressure to resolve

applications promptly is ineffective (or unnecessary), despite docket management being one of

the stated grounds for examiner evaluation in the Patent Office.

Recall that examiner assessment errors, ε, are normally distributed with mean 1 + 1/θ and

variance σ2ε/θ. In the baseline specification, we constrain σε to be the same for junior and senior

examiners. Thus, our findings on intrinsic motivation imply that junior examiners have lower bias

and variance in their search errors, relative to seniors. At the median level of intrinsic motivation,

a junior examiner’s mean error is 1.80% and standard deviation is 2.08%; for senior examiners,

the estimates are 7.33% and 4.20%, respectively. Overall, examiner errors in assessing distance
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are modest for juniors, the 95th percentile being 5.22%, but for seniors, the errors are larger,

with corresponding figure of 14.24%.

5.2 Simulated Padding and Examiner Errors

Padding is not observable in the data, so we simulate the model to calculate the implied distri-

bution of optimal initial padding for applicants who (endogenously) apply. At the mean, padding

increases claim value by about 20%, rising to 31% at the 70th percentile and 57% at the 90th

percentile.

We compute two key performance metrics with the simulated model: type 1 and type 2 errors.

Type 1 errors occur when an examiner grants a patent with invalid claims. At the extensive

margin, approximately 13% of grants contain at least one claim that should not have been

approved. However, overall, only 6% of all granted claims are invalid. Further, most of these type

1 errors occur on claims close to the threshold. For example, only 2% of all granted claims are

“egregious” errors, in the sense of being more than one standard deviation below the patentability

threshold. Given our earlier finding that 81% of claims intially have unpadded distances below

the threshold, this demonstrates that the prosecution process is relatively effective at screening

out invalid claims.

Type 2 errors denote cases in which an applicant abandons an application that contains valid

claims. At the extensive margin, more than 31% of abandonments include at least one valid

claim, and among all abandoned claims, 16% are valid. As with type 1 errors, most type 2 errors

also occur in cases of marginal validity: 13% of abandoned applications contain a claim with a

distance over one standard deviation above the threshold, and 5% of abandoned claims are at

least one standard deviation above the threshold.

5.3 Model Fit and Robustness Analysis

Our simulated model moments, calculated at the estimated parameters, successfully match most

of the data moments used for estimation (see Appendix Figure A.2). The real test of model fit is

the ability to match data moments external to the estimation procedure. To do this, we compute

(i) percentiles on granted distances in each round; (ii) mean distance for fourth, fifth, and sixth

rounds; and (iii) means and percentiles of round one rejection rates across seniority categories.

Appendix Figure A.3 displays these moments. We match the set of external moments closely.

We also conduct extensive robustness checks on our baseline model. In what follows, we summa-

rize the findings from the checks; the complete set of estimates is in Appendix Table A.5. First,

we generalize the functional form linking padded distance to true distance and padding. Rather
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than proportionality, we specify D̃j = (D∗
j )

ϑ/p. The estimated ϑ is 1.77. Other model param-

eters are similar to the baseline estimates, apart from the parameters of the Beta distribution

for unpadded distance, of course, which change so that the padded distance in the model still

matches that in the data.

Second, in the baseline model, we compute the threshold as the maximum, across examiners,

of the closest distance among each examiner’s granted claims. For robustness, we experiment

with the first percentile rather than the closest distance for each examiner, in case the threshold

is sensitive to outliers in finite samples. The parameter estimates from using the alternative

construction of the distance threshold are very similar.

Third, we relax the assumption of constant claim narrowing in two ways. First, we allow the nar-

rowing parameter η to differ between the first round and subsequent rounds. Narrowing is larger

in the first round, estimated at 35%, as compared to 25% for later rounds. The other param-

eters remain robust. Second, we allow narrowing to vary by examiner seniority. The estimated

per-round narrowing is higher for senior examiners than for juniors (37% vs. 29%, respectively).

Other parameter estimates are similar.

Fourth, we consider two alternative specifications for the examiner’s intrinsic motivation utility

cost. The first specification allows the cost to be nonlinear in the proportion of wrongly granted

claims so that R(Mr, θ) = θ
(
Mr
M0

)ς
. The estimated exponent is close to 1 (ς = 1.09), and the

other model parameters are similar to the baseline. The second version makes the cost a function

of the number of wrongly granted claims rather than the proportion: R(Mr, θ) = θMr. The

estimated parameters are generally robust. It is worth noting that granted patents typically have

at most one invalid claim, making it harder to pin down the intrinsic motivation parameter in

the second specification. For this reason, we use the proportional specification (with ς = 1) in

the baseline.

Fifth, we allow examiner delay costs to differ after the second round of negotiation. We find

that the delay cost is higher in the first two rounds as compared to later rounds, contrary to

expectations: 2.21 vs. 1.70. In any case, the impact of delay costs remains very small, equivalent

to at most 0.10 credits.

Lastly, we allow the variance of examiner distance assessment errors to differ by seniority directly

(aside from the effect of intrinsic motivation). Our estimates, σ̂Jε =0.23 and σ̂Sε =0.09, indicate

that, at the same level of intrinsic motivation, junior examiners have a substantially larger

variance in search errors than seniors. This implies that junior examiners are less consistent

in their evaluations, which may reflect less experience. However, evaluated at the median level

of intrinsic motivation, the mean assessment error is still much lower for juniors than seniors
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(2.13% and 7.07%, respectively), and the 95% upper bound is 7.65% for juniors versus 11.00%

for seniors. These implications are similar to those we obtained from the baseline model.

6 Counterfactual Analysis

We conduct a series of counterfactual experiments to study the impact of various reforms on the

speed and quality of the screening process. Table 4 presents the results. For reference, we provide

the baseline results in the first row of the table. We report the bootstrapped confidence intervals

for the counterfactual outcomes in Appendix Table A.7. The confidence intervals are tight across

all outcomes, and all differences we describe below are statistically significant at the 5% level.

Fees In the baseline, we set applicant fees at the actual Patent Office levels, which are relatively

low and do not include any per-round fees until round three. In the first counterfactual, we

introduce a $25,000 fee for each negotiation round. The fee gives applicants a greater incentive

to exit the patent process swiftly and a weaker incentive to apply in the first place. Imposing

this fee reduces padding by 17% and increases the fraction of inventions for which patents are

not sought by 30% relative to the baseline. The mean (padded) value of claims rises slightly,

reflecting self-selection by applicants.

At the extensive margin, type 1 error falls slightly, but type 2 error increases, as applicants more

readily abandon patents with valid claims to avoid the increased fees. Similar results hold for the

intensive margin errors. The trade-off between these two types of errors is a prominent feature of

many of the counterfactuals we analyze. Finally, in the baseline and fee counterfactual, around

35% of type 1 errors and 43% of type 2 errors are egregious in the sense that the claim distances

are more than one standard deviation away from the estimated patentability threshold.

Rounds Restrictions We consider three caps on the number of negotiation rounds: three

rounds, two rounds, and a single round (removing all negotiation between the applicant and the

examiner).23 Restrictions on rounds strongly affect screening quality and speed. A two-round cap

more than doubles the proportion not applying and reduces mean padding by 63%. As expected,

the mean number of rounds decreases relative to the baseline, both because of the mechanical

23These counterfactuals are motivated by a U.S. federal court decision which ruled that the Patent Office did

not have the authority to restrict the number of rounds beyond two (which it viewed as a “substantive” change)

but noted that it could make “procedural” changes such as increasing fees (SmithKline Beecham Corp. v. Dudas,

541 F. Supp. 2d 805, 2008). Since one can achieve the same equilibrium number of rounds with an “equivalent”

fee, the distinction is problematic from an economic point of view.
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Table 4. Counterfactual Experiments

Counterfactual Not Apply Pad # Rounds ṽj T1 T1 Egr T2 T2 Egr

(%) (%) (%) (%) (%) (%)

Baseline 14.18 20.50 2.08 29.35 12.61 4.08 31.31 12.55

25,000 Round Fee 18.39 16.94 1.97 30.07 12.15 4.21 33.75 14.43

Three Rounds 17.73 15.56 1.96 29.94 12.37 3.86 36.18 15.67

Two Rounds 32.31 7.59 1.64 31.88 11.79 3.99 38.62 15.73

One Round 65.92 -4.75 1.00 36.97 4.19 1.10 75.67 59.71

Credit↘ 14.08 20.42 2.09 29.39 11.85 3.24 31.53 12.70

5% IM 5.25 52.36 1.67 46.44 91.88 78.45 7.84 3.67

5% IM + Credit↘ 4.38 69.07 1.58 53.43 92.70 78.80 6.54 2.57

Notes: “Not Apply’ is the percent of inventors who do not apply for a patent. “Pad” is the mean level of padding. “#

Rounds” is the mean number of rounds. ṽj denotes the average padded claim value at grant, in thousands of 2023 USD.

“T1” represents the proportion of granted patents with some invalid claims, and “T1 Egr” represents the proportion of

granted patents with at least one claim with a distance more than one standard deviation below the threshold. “T2”

represents the proportion of abandoned applications with some valid claims, and “T2 Egr” the proportion of abandoned

applications with some claims having a distance more than one standard deviation above the threshold.

effect of the cap but also because of the sharp reduction in padding. All three caps increase the

mean claim value through the selection effect, with a 26% increase in the limitation to one round.

Across all three caps, the proportion of granted patents with invalid claims decreases. In the

case of only one round, type 1 error falls sharply: at the extensive margin falling from 13% in

the baseline to 4%. The downside of rounds restrictions is that they increase the proportion of

abandoned applications with valid claims. The one-round cap raises type 2 error at the extensive

margin from 31% to 76%.

For each rounds cap, we compute an “equivalent” per-round fee in the sense of generating the

same equilibrium mean number of rounds. Since the applicant has private information in this

setting, one might expect fees to be a more efficient instrument than rounds restrictions. The fee

equivalent to a two-round cap is approximately $115,000 per round, which would be politically

infeasible to implement.

Removing Intrinsic Motivation We evaluate two changes to intrinsic motivation. First, we

reduce the intrinsic motivation parameter, θ, for every examiner to 5% of its original value.

Reducing the intrinsic motivation value lowers the examiner’s utility cost of granting invalid
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claims and increases their errors in assessing distance. Knowing that examiners are more willing

to grant invalid claims, the proportion of inventors not applying falls from 14% to 5%, and

mean padding increases from 21% to 52%. Despite the increase in padding, the mean number of

rounds falls by 20%. Not surprisingly, type 1 error jumps sharply. At the extensive margin, type

1 error jumps sevenfold, with about 85% of these errors being egregious. Type 2 error declines

by 75%. This result underlines that extrinsic incentives (examiner credits) alone cannot sustain

the current level of screening performance.

Second, we keep the values of the intrinsic motivation parameter θ fixed but remove the intrinsic

motivation cost from the examiners’ grant payoffs, i.e. setting R(Mr, θ) = 0. This counterfactual

quantifies the importance of the direct impact of intrinsic motivation on examiner payoffs. The

results are qualitatively similar (with some attenuation to the size of the effects) to the previous

experiment, which only reduces the intrinsic motivation parameter. We conclude that the primary

channel through which intrinsic motivation affects outcomes is the effect on payoffs rather than

the effect on the distribution of errors. Together, these counterfactuals highlight the importance

of intrinsic motivation for the quality of patent screening and its potential salience in other public

agencies.

Removing Examiner Credits We remove all credits for the examiner on an application after

the first round. This change could be justified on efficiency grounds as “marginal cost” pricing

since we estimate small examiner costs for an additional round of negotiation. Removing credits

has a small impact on all outcomes. Intrinsic motivation is sufficiently strong for examiners to

avoid granting invalid patents, even when they will receive no further extrinsic reward for doing

so. This finding is inconsistent with the hypothesis that extrinsic incentives crowd out intrinsic

motivation in our context.

We also analyze the effect of removing credits after the first round in addition to reducing intrinsic

motivation to 5% of its original level, relative to just reducing intrinsic motivation alone. In this

case, we find material impacts of credits consistent with economic intuition. Padding increases

from 52% to 69% because applicants know that examiners have even more incentive to grant,

and once again, despite the increase in padding, the equilibrium number of rounds falls by 5%.

Type 2 error declines by 17% because the increased padding makes abandonments less likely to

include valid claims. Hence, credits only work as an effective incentive when examiners are not

(strongly) intrinsically motivated.

Final Remarks As is standard in counterfactual analyses, we emphasize that the maintained

assumption in these experiments is that all other model (exogenous) parameters remain un-
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changed. However, one can envision scenarios where this might not be the case. We illustrate

with two examples. First, in the event of a rounds cap, there are fewer opportunities for nar-

rowing to be achieved, so the per-round narrowing η might increase. We would expect a further

decline in the fraction of inventors applying for a patent and a further decrease in type 1 error.

Second, a reform that makes patent screening less rigorous, for example, policies that reduce

intrinsic motivation, might be expected to produce “marginal quality” patents and thereby in-

crease post-grant obsolescence, P post
ω . We would expect this rise in obsolescence to offset some

of our estimated increase in the fraction of inventors applying for a patent, and it would make

applicants more likely to abandon, thereby exacerbating type 2 errors. At this stage, these reper-

cussion effects remain speculative. We would require an expanded model that endogenizes what

are treated as structural parameters of interest in order to pin down how these parameters change

and be more confident about their implications for screening outcomes.

To conclude, we highlight that none of our reforms unambiguously improves both prosecution

speed and quality. Policies that make prosecution stricter speed up the process and lead to

fewer grants of invalid patents but also result in increased abandonments of valid applications.

Therefore, evaluating reforms requires measuring the social costs of screening under each scenario,

which we implement in the next section.

7 Quantifying the Social Costs of Patent Screening

7.1 Methodology

We summarize our methodology and calibration here; Appendix G provides details.

Type 1 Costs There are two sources of social costs from type 1 errors: deadweight loss from

patent royalties and litigation costs from challenges against invalid patents.

To compute deadweight loss, we assume that the patentee charges the Arrow royalty equal to the

unit cost saving from the invention. The deadweight loss from royalties depends on the market

structure for licensees. Our baseline specification is perfect competition among licensees, with

linear demand and constant unit cost.

We express the deadweight loss asDWL = λ
2
∆℘
℘ V̄ , where ℘ is the initial price (without the royalty

associated with the patent), V̄ = q∆℘ denotes total royalty payments, and λ is the absolute value

of the elasticity of product demand. See Appendix G.1 for details on our calibration of λ and
∆℘
℘ .

The second component is litigation costs on patents with some claims below the patentability
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threshold. We assume that courts are perfect in that that they invalidate patents if and only

if they contain claims below the patentability threhsold. However, not all invalid patents are

exposed to litigation because their private value is not large enough to justify the litigation

expense. Letting V SL denote the value at stake in litigation, patents are exposed to litigation if

V SL ≥ V̌ , where V̌ is a litigation exposure threshold. We calculate V̌ to match the proportion

of patents not exposed to litigation in Schankerman and Schuett (2022), given by v̌ = 89.6%.

Hence, V̌ = GV SL(v̌), where GV SL(·) denotes our distribution of the private value of the patent

right at stake in litigation. Exposed patents are challenged in court with probability of 16.4%

from Schankerman and Schuett (2022).24

The social cost for invalid patents not exposed to litigation is the deadweight loss from royalties

only. For exposed patents that are not challenged in court, we assume there is an underlying

dispute that is settled by costly mediation incurred by both parties, in addition to the deadweight

loss from royalties. For exposed patents that are challenged in court, we assume that the courts

are perfect and thus always invalidate wrongly granted claims. The social cost in this case is the

sum of litigation costs for both the patentee and challenger.25

Type 2 Costs From an ex post perspective, there is no social cost from a type 2 error, since

the innovation has already been produced and publicized through the patent document, and the

R&D cost is sunk. Thus, we analyze the social cost of type 2 errors from the ex ante (incentive)

perspective. Type 2 errors reduce the expected value of patent protection to the inventor, thereby

deterring some inventors from developing welfare-enhancing inventions. The social cost is the

social value of welfare-enhancing inventions that are not developed when there is the possibility

of type 2 error but would be developed in the absence of type 2 error. For this task only, we

require a simple model of development.

The decision to develop an idea depends on three elements: the ex ante value of patent rights,

Γ∗, development cost, κ, and the value of the invention without patent protection, Π. Our model

calculates Γ∗ (Equation (5) in Section 2.4). For development cost, we take random draws from

the distribution of κ estimated by Schankerman and Schuett (2022). To derive the invention value

without patent rights, we use Π = Γ∗/Ψ, where Ψ is the proportional increase in private value

24Patentees with invalid patents can pre-empt a challenge by charging a royalty payment equal to the cost of

litigation for the challenger. For these cases, the social cost is only the deadweight loss since the payment is a pure

transfer from the licensee to the patentee.
25We assume litigation costs are linear in the value at stake and calibrate the coefficients using data from the

American Intellectual Property Law Association (AIPLA). The AIPLA also provides mediation costs by value at

stake, which we associate to each developed invention. See Appendix Section G.1 for details.
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due to patent protection (the “patent premium”), which we calibrate based on Bessen (2008).

To compute social costs of type 2 errors, let Bi = Πi +max{0,Γi} denote the private benefit of

development, which includes all profits associated with the padded invention: the gains arising

from the true invention, plus the gains from padding. The latter gains represent transfers either

from other firms or consumers, as they do not represent gains from any technological improve-

ment. As such, they are a “business stealing” effect. An inventor invests to develop an idea i in

the presence of type 2 error if their private (net) benefits Bi − κi are non-negative.

Social benefits include private gains from the true invention plus the externality but exclude pure

transfers from padding. We assume that externalities arise from the true invention (but not from

any padding associated with it). Thus, the social net benefit is given by SNBi =
ρS

ρP

(
Bi
pi

)
− κi

where Bi/pi represents (to a first order approximation) the true invention and ρS/ρP is the

externality multiplier given by the ratio of the social and private rates of return. An idea is

socially beneficial if SNBi ≥ 0. For the baseline, we use a conservative estimate of ρS/ρP = 2

from Bloom, Schankerman, and Van Reenen (2013).

Finally, to calculate the set of ideas that would be developed in the absence of type 2 error,

we simulate the outcomes from a counterfactual experiment in which, at the point of patent

abandonment, the inventor obtains the value of all valid claims in the patent. In this scenario,

all remaining abandoned claims are invalid, so there is no type 2 error. Let B′ denote the privte

benefit of development in this new scenario. Idea i would be developed in this scenario if B′−κi ≥
0. We then compute type 2 costs as the sum of social net benefits SNBi, across ideas with

Bi − κi < 0 but B′
i − κi ≥ 0.

Patent Prosecution Costs Patent prosecution costs are the sum of Patent Office admin-

istrative costs and all applicant legal costs, including costs of drafting the patent application

(F app) and amending it (F amend) during each round of prosecution. For administrative costs, we

multiply the number of claim rounds in the simulation by the average USPTO cost per round

and per claim (details in Appendix G).

Benefits of Errors Finally, weighed against these social costs, we account for the potential

benefits from both types of errors. The benefit of type 1 errors is that they increase incentives for

inventors to develop and patent their ideas. This benefit is analogous to the cost of a type 2 error.

We compute type 1 benefits as the sum of social development benefits from welfare-enhancing

projects that would not be developed without type 1 error, but that are developed with type

1 error. The benefit from type 2 errors is the deadweight loss avoided by not having granted

the patent right. There is no benefit associated with litigation cost savings since, under our
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assumption of costly but perfect courts, valid patents that are granted would not be challenged

in equilibrium.

7.2 Estimated Social Costs of Patent Screening

Table 5 summarizes the social costs of screening per annual cohort of potential inventions (in 2023

USD), for the baseline model and counterfactual reforms. We report the 95% percentile boot-

strapped confidence intervals for the total social cost; Appendix Table A.7 provides confidence

intervals for each component of social costs.

Social costs from type 1 errors are $3.01bn, $0.25bn from type 2 errors, and $12.11bn from

prosecution costs. It is striking that prosecution costs dominate, and the bulk of those costs

are associated with applicant legal costs rather than Patent Office administrative costs. The

total social cost of patent screening is $15.38bn, equivalent to approximately 5% of all R&D

performed by business enterprises in the U.S. in 2011 (the starting year of our dataset for model

estimation). These calculations use a 5% patent premium. This choice is at the upper limit of

estimates in Bessen (2008). If we use the lower estimate of 2.5%, total social costs increase to

$18.20bn, equivalent to 6% of total R&D expenditures.

Introducing a $25,000 per-round fee reduces prosecution costs by discouraging applications and

reducing padding. The fee has a moderate effect on type 1 costs, but it increases type 2 costs as

applicants are more likely to abandon with some valid claims in a scenario with high negotiation

fees. Total social costs decline by 8% with the per-round fee. If this fee raises extra revenue that

is reinvested in more intensive (and hence more accurate) examination, then social costs would

decline further (Schankerman and Schuett, 2022).

The impact of caps on the number of negotiation rounds is generally larger than that of the per-

round fee. Restricting the process to one round reduces social costs by 37%. The non-overlapping

confidence intervals confirm the statistical significance of these impacts. While the total social cost

declines, type 2 costs rise with rounds restrictions. This increase may induce political opposition

to such a reform from the patent community in the absence of some compensation, such as an

adjustment to the R&D tax credit.

Reducing intrinsic motivation to 5% of its original level increases total social cost by 75%, and

all components of social cost rise: there is no trade-off in this experiment. When examiners have

almost no intrinsic motivation, they are willing to grant applications fast, even if the applications

are substantially invalid. The resulting decrease in prosecution costs on each application is offset

by the marked increase in the number of inventors applying for patent rights. Moreover, the

willingness to grant patents with invalid claims increases type 1 costs almost fourfold. This

42



Table 5. Net Social Costs of Patent Prosecution

Counterfactual T1 Cost T2 Cost T3 Cost Total Total C.I.

Baseline ($Bn) 3.01 0.25 12.11 15.38 [15.25, 15.43]

25,000 Round Fee 2.52 0.51 11.16 14.19 [13.80, 14.70]

Three Rounds 2.55 0.87 11.21 14.63 [14.58, 14.70]

Two Rounds 2.28 3.40 8.46 14.14 [13.93, 14.31]

One Round 0.40 5.74 3.61 9.76 [9.38, 10.15]

Credit↘ 2.35 0.16 12.14 14.66 [14.62, 14.68]

5% IM 10.95 1.15 14.82 26.91 [25.87, 27.80]

Credit↘ + 5% IM 12.07 0.05 16.31 28.44 [27.86, 28.93]

Notes: “T1 Cost” denotes total type 1 net social costs, “T2 Cost” denotes total type 2 net

social costs, and “T3 Cost” denotes patent prosecution costs. “Total” sums the three costs.

“C.I.” refers to the 95% confidence interval of “Total”. All numbers are measured in billions of

2023 USD. The table is based on λ = 2, ρs

ρp
= 2, and Ψ = 0.05. Appendix Table A.6 provides

results for ρS

ρP
= 1.5 and patent premium Ψ = 0.025.

finding confirms the importance of intrinsic motivation in this public agency.

Finally, removing both intrinsic motivation and examiner credits beyond round one increases

social costs by 6% relative to only removing intrinsic motivation. This result suggests that credits

can be effective for screening when intrinsic motivation is low.

Before concluding, we highlight one qualification regarding our empirical quantification of the

social costs of screening. While our positive analysis—specifically, the screening and development

model—does not presuppose that the patentability threshold is at the optimal level, our specific

calculations presented in this section do rest on this assumption.26 To see this, suppose the

prevailing threshold were lower than optimal, so that some patents are considered “valid” and

granted, but should not be under the optimal threshold. In this case, we would understate type

1 error (some invalid claims would be incorrectly classified as valid) and thus understate type 1

costs. An analogous argument shows that, in this case, we would overstate type 2 costs. Whether

the current patentability threshold is optimal remains an open research question we are pursuing.

26For discussion of the optimal level of patent eligibility, see Schankerman and Schuett (2022) Section 2.2.
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8 Concluding Remarks

There are three natural directions for further research. The first is to estimate patent screening

models for the other major international patent offices and then conduct a comparative evaluation

of these institutions. The second direction is to estimate our model on individual technology fields

to assess whether a one-size-fits-all institutional design is appropriate. Finally, we believe there

are opportunities to use structural models to study innovation-supporting institutions such as

the NIH, NSF, and similar institutions in other countries.

Appendices

Supplemental appendices are available here.
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