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A Additional Tables and Figures

Table A.1. Regression Results

(1) (2)

Variable Negotiation Grant

GS-7 -0.002 (0.004) 0.003 (0.004)

GS-9 -0.016 (0.004) 0.035 (0.004)

GS-11 -0.020 (0.004) 0.066 (0.004)

GS-12 -0.034 (0.004) 0.092 (0.004)

GS-13 -0.045 (0.004) 0.126 (0.004)

GS-14 -0.091 (0.004) 0.178 (0.004)

Chemicals (17) 0.063 (0.001) 0.067 (0.001)

Comp. Software (21) 0.105 (0.002) 0.196 (0.002)

Comp. Networks (24) 0.123 (0.002) 0.192 (0.002)

Communications (26) 0.047 (0.002) 0.198 (0.002)

Electronics (28) -0.010 (0.001) 0.244 (0.001)

Other (36) 0.065 (0.001) 0.136 (0.001)

Engineering (37) 0.042 (0.001) 0.139 (0.001)

Small Entity -0.120 (0.001) -0.169 (0.001)

Year Dummies Yes Yes

N 1,641,333 1,759,313

Notes: Column (1) shows estimates from a regression of a binary variable equal to one if the application process

lasts more than one round, against dummies for examiner seniority grade, technology center, year of application,

and a small entity indicator (applying firm having fewer than 500 employees). Column (2) is the same except the

dependent variable is equal to one if the examiner grants a patent. The omitted grade is GS-5, and the omitted

technology center is Biotechnology and Organic Fields (16). Technology center “Other” refers to Center 3600,

which is “Transportation, Electronic Commerce, Construction, Agriculture, Licensing and Review.” Following

Frakes and Wasserman (2017), we omit GS-15 examiners. Standard errors are clustered at the examiner level.

1



Table A.2. Estimated and Assigned Parameters

Estimated Parameters

Variable Notation Distribution Parameters

Examiner

Intrinsic motivation θ ∼ GS,θ(·) Log-normal σθ, µ
J
θ or µS

θ

Error ε ∼ Ge,ε(·) Normal σε

Applicant

Initial claim returns v∗j ∼ Gv(·) Log-normal µv , σv

Initial claim distances D∗
j ∼ GD(·) Multivariate Beta αD, γD, ρ

Obsolescence ω Bernoulli Ppre
ω or Ppost

ω

Application legal costs fapp Log-normal µf,app,σf,app

Issuance legal costs fiss Log-normal µf,iss,σf,iss

Maintenance legal costs fmain Log-normal µf,main,σf,main

Amendment legal costs famend Log-normal µf,amend,σf,amend

Narrowing η - -

Threshold by technology center τT Range from 0.47 to 0.50

Assigned Parameters

Variable Notation Values

Discount rate β 0.95

Depreciation δ
0.14−Ppost

ω

1−P
post
ω

Credits gry(S, T ) See Appendix D

Finalizing fee ϕ $1,770

RCE fees F 3
round = F 5

round $930

F 4
renew $1,600

Renewal fees F 8
renew $3,600

F 12
renew $7,400

Notes: To generate correlated multivariate Beta draws for unpadded distances, we draw a

vector of size M0 from a standard multivariate normal with correlation coefficient ρ. We apply

the quantile function of the normal to the draws to create correlated uniform random variables.

Then for the estimation initial values (α̃D, β̃D), we apply the inverse CDF of a Beta distribution

with these parameters to the uniform draws to generate correlated beta distributed initial

distances. For ρ, we use the empirical correlation of granted distances. Simulations confirm

that the correlation of the multivariate copula is very close to the correlation of the distances.

See Nelsen (2007) for details.
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Table A.3. Estimated Attorney Costs by Technology Area (Application)

Parameter Symbol Estimate S.E.

Chemical application fighting cost log-mean µchem
f 9.14 0.003

Chemical application fighting cost log-sigma σchem
f 0.44 0.009

Electrical application fighting cost log-mean µelec
f 9.20 0.002

Electrical application fighting cost log-sigma σelec
f 0.11 0.002

Mechanical application fighting cost log-mean µmech
f 8.98 0.003

Mechanical application fighting cost log-sigma σmech
f 0.75 0.006

Notes: Standard errors are bootstrapped.

Table A.4. Estimated Attorney Costs by Technology Area (Other)

Parameter Symbol Estimate

Simple amendment fighting cost log-mean µsimple
f,amend 7.60

Simple amendment fighting cost log-sigma σsimple
f,amend 0.37

Chemical amendment fighting cost log-mean µchem
f,amend 8.13

Chemical amendment fighting cost log-sigma σchem
f,amend 0.45

Electrical amendment fighting cost log-mean µelec
f,amend 8.07

Electrical amendment fighting cost log-sigma σelec
f,amend 0.38

Mechanical amendment fighting cost log-mean µmech
f,amend 7.95

Mechanical amendment fighting cost log-sigma σmech
f,amend 0.43

Issuance cost log-mean µf,iss 6.55

Issuance cost log-sigma σf,iss 0.62

Maintenance cost log-mean µf,main 5.67

Maintenance cost log-sigma σf,main 0.46

Notes: Standard errors are not included here, since we only observe the fighting costs

moments for the external GMM estimation rather than the underlying data.
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Table A.5. Robustness of Model Estimates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Symbol Baseline Distance FF 1% τ Unpurged η Round η Seniority IM FF (i) IM FF (ii) π Round σε Seniority

µv 10.60 9.81 10.70 11.07 10.41 11.48 10.89 11.02 10.14 10.47

σv 0.86 1.29 0.90 1.19 0.94 0.53 2.31 0.55 0.58 1.07

P pre
ω 0.13 0.14 0.16 0.14 0.16 0.13 0.14 0.16 0.13 0.12

P post
ω 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

αD 3.96 7.00 4.00 4.10 4.35 3.35 4.41 4.74 3.74 4.28

γD 7.71 6.34 7.64 8.01 8.34 6.62 8.34 8.76 7.46 8.18

µsimple
f 8.55 8.66 8.49 8.73 8.68 8.65 8.56 8.45 8.38 8.64

σsimple
f 0.88 0.77 0.87 0.38 0.77 0.62 0.81 0.97 1.11 0.87

µJ
θ 3.81 3.77 3.50 3.85 3.94 4.36 3.74 3.71 3.69 3.61

µS
θ 2.77 2.98 2.55 2.94 3.05 3.17 2.74 2.98 2.69 2.98

σθ 0.98 0.95 0.95 1.12 1.09 1.27 0.98 1.11 0.95 0.98

η 0.27 0.28 0.29 0.28
η1 =0.29 ηJ=0.26

0.27 0.29 0.27 0.28
η2+ =0.22 ηS=0.32

π 1.01 2.38 0.48 0.90 1.08 0.37 1.04 0.83
πINIT =0.73

0.50
πRCE =1.54

σε 0.18 0.16 0.20 0.22 0.20 0.10 0.21 0.23 0.18
σJ
ε =0.23

σS
ε =0.32

ϑ - 1.79 - - - - - - - -

ς - - - - - - 0.89 - - -

Notes: This table provides estimates of the model parameters across various model alternatives. Column (1) reproduces the baseline estimates; (2) adjusts

the functional form (FF) for padded distance to D̃j = (D∗
j )

ϑp−1; (3) uses the 1% of each examiner’s distance granted for the threshold estimator; (4) uses

unpurged distances; (5) allows narrowing to vary by rounds 1 and 2+; (6) allows narrowing to vary by seniority; (7) adjusts the functional form for intrinsic

motivation cost to R(Mr, θ) = θ
(

Mr
M0

)ς

; (8) adjusts it to R(Mr, θ) = θMr; (9) allows delay cost to differ in RCEs; (10) allows error variance parameter to

vary by seniority.
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Table A.6. Net Social Costs of Patent Prosecution: Robustness

Patent Premium (Ψ) = 0.05 Patent Premium (Ψ) = 0.025

Counterfactual T1 (1.5) T1 (2.0) T2 (1.5) T2 (2.0) T3 Σ (1.5) Σ (2.0) T1 (1.5) T1 (2.0) T2 (1.5) T2 (2.0) T3 Σ (1.5) Σ (2.0)

Baseline ($Bn) 4.8 4.8 0.7 1.3 18.6 24.1 24.7 5.3 5.3 0.2 0.4 21.0 26.5 26.7

50K Round Fee 4.4 4.3 1.1 2.1 15.9 21.3 22.3 4.9 4.9 0.3 0.7 17.2 22.4 22.8

Three Rounds 4.0 3.8 1.9 4.0 13.7 19.6 21.4 4.4 4.4 1.0 2.1 14.9 20.4 21.4

Two Rounds 3.0 2.9 3.5 7.3 8.8 15.3 19.0 3.2 3.2 0.5 1.1 9.5 13.2 13.8

One Round 0.6 0.6 3.1 6.5 3.6 7.2 10.6 0.7 0.7 0.4 0.8 3.8 4.8 5.3

15% IM 19.2 17.7 0.8 1.7 18.9 38.9 38.3 20.9 19.6 0.4 0.8 21.1 42.4 41.4

Credit↘ 4.5 4.4 0.7 1.3 18.6 23.8 24.4 4.6 4.5 0.2 0.5 21.0 25.8 25.9

Credit↘ + 15% IM 11.6 3.4 1.4 3.0 20.6 33.6 27.0 15.9 9.4 0.9 1.9 22.9 39.6 34.2

Notes: This table provides the values of net social costs for alternative values of the patent premium and social multiplier. Columns denoted Tj (1.5) and Tj (2.0)

provide values of type j net social costs when ρsoc
ρpriv

is equal to 1.5 and 2.0, respectively. Columns Σ (1.5) and Σ (2.0) provide the total net social costs when ρsoc
ρpriv

is

equal to 1.5 and 2.0, respectively.

Table A.7. Counterfactual Confidence Intervals

Counterfactual Not Apply Pad R1 Gr ṽj T1 Err T1 Egr T2 Err T2 Egr T1 Cost T2 Cost T3 Cost

(%) (%) (%) (%) (%) (%) (%)

Baseline [4.82, 6.36] [5.31, 5.95] [10.82, 11.56] [42.95, 53.19] [17.40, 17.89] [4.20, 4.29] [37.48, 39.74] [17.42, 18.59] [4.28, 4.91] [0.26, 2.27] [17.48, 19.00]

50K Round Fee [14.64, 18.39] [0.70, 1.39] [15.76, 17.69] [45.60, 55.60] [16.71, 16.96] [4.22, 4.34] [42.59, 45.28] [21.64, 23.30] [3.74, 4.59] [1.17, 5.99] [14.39, 16.25]

Three Rounds [23.79, 24.24] [0.33, 0.66] [13.86, 14.61] [46.00, 57.10] [16.64, 17.23] [4.06, 4.17] [46.76, 49.16] [22.82, 24.35] [3.28, 3.94] [1.85, 8.98] [12.98, 13.84]

Two Rounds [45.49, 45.93] [-3.29, -3.09] [23.34, 24.23] [49.57, 61.69] [14.27, 14.60] [4.23, 4.40] [50.61, 53.12] [30.44, 32.20] [2.20, 3.14] [5.79, 11.41] [8.41, 8.91]

One Round [73.87, 74.37] [-8.31, -8.23] [88.73, 88.94] [53.65, 67.09] [5.23, 5.55] [1.47, 1.56] [74.91, 75.94] [55.79, 56.44] [0.46, 0.61] [4.74, 10.09] [3.44, 3.61]

15% IM [2.22, 3.04] [10.34, 11.20] [31.47, 32.44] [50.89, 63.25] [80.01, 80.50] [52.61, 53.21] [21.68, 23.22] [10.33, 11.23] [13.98, 19.04] [0.51, 2.68] [17.95, 19.29]

Credit↘ [4.77, 6.28] [5.07, 5.79] [10.81, 11.61] [42.92, 53.16] [16.95, 17.42] [3.87, 3.95] [37.63, 39.75] [17.74, 18.96] [3.81, 4.75] [0.01, 2.27] [17.48, 18.99]

Credit↘ + 15% IM [1.60, 2.25] [29.94, 32.99] [32.55, 34.12] [59.19, 74.30] [81.23, 81.63] [52.52, 53.72] [14.57, 15.86] [5.82, 6.65] [1.49, 6.14] [1.24, 3.86] [19.51, 21.00]

Notes: This table provides 95% percentile bootstrapped confidence intervals for outcomes and social costs across counterfactual scenarios. See Tables 3 and 4 for

description of columns and rows.
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Figure A.1. Distribution of Padded Granted Distances
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Figure A.2. Algorithmic Errors and Latent Variable Model

uf,k1 > 0

D1
f

D̃fe1f > 0

⋆k1 ⋆ ⋆f

uf,k2 > 0

D5
f

D̃fe2f > 0

▲k2 ▲ ▲ f

(a) Subfigure 1

■k4 ■ ■f ′

uf ′,k4
< 0

D̃f ′

D1
f ′e1f ′ < 0

•k3 •

e2f ′ > 0

uf ′,k3
< 0

D5
f ′

D̃f ′

• f ′

(b) Subfigure 2

Notes: The figures depict the variables of the latent variable model (D̃,D1, D5, e1, and e2), and the algorithmic error,

denoted u, for two focal claims f and f ′. The aim is to illustrate that positive correlation between the algorithmic errors

need not imply any particular correlation in latent variable errors e1 and e2. Black color depicts the focal claim location,

orange color the true position of a claim, and blue color the algorithm’s measurement of the position of a claim. For the

sake of illustration, assume that focal claims have no algorithmic error, the latent model has no controls, and ξ2 = 1, so

that D1
f = D̃f + e1f and D5

f = D̃f + e2f .

In Subfigure 1, claim f (shown by the black star and the black triangle) is the focal claim whose distance to prior art we

want to measure. Claim k1 is the closest, and k2 the fifth closest in reality. The distance between the black and orange stars

represents D̃f . The distance between the orange and blue stars is the positive algorithmic error in measuring the distance

between f and k1. The algorithm measures the distance between f and k1 as the distance between the black and blue

stars. This length is shorter than the measured distance between the black and blue triangles, so, the ordering is correct.

In Subfigure 1, the algorithmic errors uf,k1
and ff,k2

are positive, and so are e1f and e2f . In Subfigure 2, while both

algorithmic errors ff ′,k3
and ff ′,k4

are negative, e1f ′ is negative whereas e2f ′ is positive. Hence, in Subfigure 1, the signs

of the algorithmic errors match those of e1 and e2, but in Subfigure 2 the signs do not match.
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Figure A.3. SMM Objective Value Plots
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Figure A.4. Match of internal data and model moments
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Figure A.5. Match of external data and model moments
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B Proofs

B.1 Proposition 1

Proof. =⇒: Suppose that Condition 1 holds. Take V (p, v∗j ) = ṽL(p, v
∗
j ,0) = V(p, v∗j ) = ṽ1j and

D(p,D∗
j , ε) = D̂L(p,D

∗
j , ε,0) = D(p,D∗

j , ε) = D̂1
j . Then, by the condition we assume, we have

ṽL(p, v
∗
j ,η) = Wv(V (p, v∗j ),η) along with D̂L(p,D

∗
j , ε,η) = WD(D(p,D∗

j , ε),η) implying we can

take ṽC = Wv and D̂C = WD.

It remains to show that ṽC and D̂C are increasing in their first argument at η = 0. Note that

for all ṽ1j , ṽ
1
j = ṽC(ṽ

1
j ,0). Therefore, for ṽ

1
j,1 < ṽ1j,2,

ṽC(ṽ
1
j,1,0) = ṽ1j,1 < ṽ1j,2 = ṽC(ṽ

1
j,2,0)

therefore ṽC is increasing in its first argument at η = 0. The same argument works for D̂C . This

completes the necessity of being able to separate the terms (p, v∗j ) and η in the arguments of ṽL

(similarly for D̂L). Next, we move to the sufficiency.

⇐=: Assume that (2) and (3) hold. We need to show that Condition 1 holds. Note that by

definition, ṽ1j = ṽC(V (p, v∗j ),0) and D̂1
j = D̂C(D(p,D∗

j , ε),0). Because both ṽC and D̂C are

strictly increasing at η = 0, by the implicit function theorem, we can write V (p, v∗j ) = ṽ−1
C (ṽ1j ,0)

and D(p,D∗
j , ε) = D̂−1

C (D̂1
j ,0). Plugging in to (2) and (3) respectively, we obtain

ṽL(p, v
∗
j ,η) = ṽC(ṽ

−1
C (ṽ1j ,0),η) ≡ Wv(ṽ

1
j ,η) (B.1)

and

D̂L(p,D
∗
j , ε,η) = D̂C(D̂

−1
C (D̂1

j ,0),η) ≡ WD(D̂
1
j ,η) (B.2)

as required. The first equalities in (B.1) and (B.2) show directly that the examiner does not need

to form or update beliefs on p, v∗j and D∗
j : they have a way to map initial values (respectively, dis-

tance assessments) and narrowing into future padded values (respectively, distance assessments),

without any knowledge of p, v∗j , D
∗
j .

B.2 Proposition 2

Proof. To start, we state and prove a lemma that will be used in the proof of Proposition 2.

Lemma 1. Suppose condition 2.1 in Proposition 2 holds. Then, for an examiner with sufficiently

large intrinsic motivation, D̂j ≥ τ for all j granted, that is, the examiner will never grant a claim

with an assessed distance below the threshold.
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Proof. In round r, an examiner will refuse to grant a patent to an application with a claim below

the threshold (i.e., an application with Rr > 0) if

grGR − θRr < grREJ + E(W r
e )

where we have dropped the (S, T ) terms on credits for ease of notation. We show that if θ is

sufficiently large, this inequality holds when replacing E(W r
e ) with W r

e , for all realizations of

W r
e . This ensures that the inequality will hold with the expected value of W r

e , as required.

The realizations of W r
e depend on the terminal round of the application, either through ob-

solescence, in which case we have abandonment, or from choices to abandon/grant. When the

terminal round is r + s for s ≥ 1 there are two inequalities to consider. In the case of grant in

round r + s, the inequality is

θ >
−
(
−grGR + βsgr+s

GR +
∑s−1

s′=0 β
s′
[
gr+s′

REJ + gr+s′

FIGHT − βπ
])

Rr − βsRr+s

and in the case of abandonment in round r + s the inequality is1

θ >
−
(
−grGR + βs(gr+s

REJ + gr+s
ABN ) +

∑s−1
s′=0 β

s′
[
gr+s′

REJ + gr+s′

FIGHT − βπ
])

Rr

Both will hold for sufficiently intrinsically motivated examiners. For the denominators, by con-

dition 2.1, Rr cannot be smaller than M̄−1 and for all r, s, we have Rr − βsRr+s is positive

and bounded, because β < 1 and by narrowing, and Rr ≥ Rr+s for all s > 0. The numerators

are either negative, in which case the inequality holds for all θ; otherwise, the numerators are

positive but bounded.

Therefore, for a sufficiently motivated examiner, the key inequality holds for all realizations ofW r
e

and thus for E(W r
e ), as required. The intuition is that if the examiner is sufficiently intrinsically

motivated, and they are looking at an application with claims they believe invalid (R > 0), it is

always better for them to wait for a future round, where R will fall, potentially to zero.

Next, to prove the proposition, we reformulate τ̂ in a way that lends itself to the appropriate

asymptotic analysis. Note that examiner e’s minimum padded distance across all claims they

grant can be written as the minimum, across granted patents a = 1, . . . , Ae that are examined

by examiner e, of the minimum padded distance of the granted claims on patent a. The latter

quantity just described is given by minj=1,...,MGR
a

D̃j , where M
GR
a is the number of claims granted

1The case for abandonment in round r is covered by taking s = 0, in which case the latter summation is empty.
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on patent a. Hence,

τe = min
j∈MGR

e

D̃j = min
a=1,...,Ae

min
j=1,...,MGR

a

D̃j (B.3)

As mentioned in the main text, we focus on the case of Ae = A for all e. To prove consistency,

we must show that for every ϑ > 0, P(|maxe τe − τ | > ϑ) −→
A→∞

0. Since

P(|max
e

τe − τ | > ϑ) ≤ P(max
e

τe > τ + ϑ)︸ ︷︷ ︸
A

+P(max
e

τe < τ − ϑ)︸ ︷︷ ︸
B

,

it suffices to show that A and B converge to 0. For the first, note that

A = P

(
E⋃

e=1

(τe > τ + ϑ)

)
≤

E∑
e=1

P(τe > τ + ϑ). (B.4)

Now, using Equation (B.3) and the fact that minj=1,...,MGR
a

D̃j is an independent random variable

across granted applications, we have that2

P (τe > τ + ϑ) =
A∏

a=1

[G1a(τ + ϑ)]

where G1a(τ + ϑ) = P
(
minj=1,...,MGR

a
D̃j > τ + ϑ

)
. To complete the argument, we explain why

G1a(τ + ϑ) < 1 for all examiners e and applications a, from which it follows that
∏A

a=1[G1a(τ +

ϑ)] −→
A→∞

0 and thus A −→
A→∞

0.

For an examiner with infinite intrinsic motivation, their assessment is equal to D̃j because they

do not make search errors. By the continuity of D̃j (ensured by the continuity of D∗
j ), there

is non-zero probability that they receive and then grant a claim D̃j ∈ (τ, τ + ϑ) and thus

G1a(τ + ϑ) < 1. For an examiner with finite intrinsic motivation, G1a(τ + ϑ) is strictly less than

1 because D̃j = D̂j/εa, implying that the middle term satisfies

P

(
min

j=1,...,MGR
a

D̂j

εa
> τ + ϑ

)
= P

(
D̂j

εa
> τ + ϑ ∀j

)
≤ P

(
1

εa
> τ + ϑ ∀j

)
= P

(
εa <

1

τ + ϑ

)
= Φ

(
(τ + ϑ)−1 − 1− µ

σ

)
< 1

The middle inequality here relies on the fact that D̂j ≤ 1 for all j. Now, we show that B converges

to 0. Consider the examiner meeting condition in Equation (7) in the text, and denote them by

e∗. Then,

B = P(τe < τ − ϑ, ∀e) ≤ P(τe∗ < τ − ϑ).

2minj=1,...,MGR
a

D̃j is independent across examinations because examiner errors, padding, and unpadded dis-

tances are independent across examinations.
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Note that, the minimum of D̃j among j ∈ MGR
e∗ is strictly less than τ − ϑ if and only if there

exists j ∈ MGR
e∗ such that D̃j < τ − ϑ. Hence

B ≤ P

(
min

j∈MGR
e∗

D̃j < τ − ϑ

)
= P

 A⋃
a=1

MGR
a⋃

j=1

D̃j < τ − ϑ

 ≤
∑
a

∑
j

P
(
D̃j < τ − ϑ

)

Note first that the case of ϑ ≥ τ is not of interest as D̃j cannot be negative. Hence, we focus

on the case of 0 < ϑ < τ . Now, consider a constant H ∈ (0, ϑ
τ−ϑ), for which it holds that

τl ≡ (τ − ϑ)(1+H) < τ . Then for claim j on application a, D̃j =
D̂j

εa
< τ − ϑ implies that either

D̂j < τl or εa > 1+H. This is because otherwise we would have D̂j ≥ τl and
1

εa
≥ 1

1 +H
which

together would imply

D̃j =
D̂j

εa
≥ τl

1 +H
=

(τ − ϑ)(1 +H)

1 +H
= τ − ϑ,

a contradiction. Hence,

B ≤
A∑

a=1

MGR
a∑

j=1

P
(
D̂j < τl ∪ εa > 1 +H

)
≤

A∑
a=1

MGR
a∑

j=1

P
(
D̂j < τl

)
+ P (εa > 1 +H)

=

A∑
a=1

MGR
a∑

j=1

P
(
D̂j < τl

)
︸ ︷︷ ︸

C

+
A∑

a=1

MGR
a∑

j=1

P (εa > 1 +H)︸ ︷︷ ︸
F

Regarding C, by Lemma 1, since τl = (τ −ϑ)(1+H) < τ , we have that P
(
D̂j < τl

)
= 0 for all j

granted, so C = 0 for this examiner. For F , since εa ∼ N (1 + µ, σ2) after standardizing, we have

F =
A∑

a=1

MGR
a∑

j=1

[
1− Φ

(
H − µ(θ)

σ(θ)

)]
=

A∑
a=1

MGR
a

[
1− Φ

(
H − µ(θ)

σ(θ)

)]

≤
A∑

a=1

M̄

[
1− Φ

(
H − µ(θ)

σ(θ)

)]
= AM̄

[
1− Φ

(
H − µ(θ)

σ(θ)

)]

Where the penultimate inequality follows from the fact that MGR
a ≤ M̄ for all a. The proof is

completed by noting that, for any A, the final term can be made arbitrarily small for an examiner

as given by the condition in Equation (7) in the text.

C Microfoundation of Examiner Search

An examiner with intrinsic motivation θ chooses time spent searching prior art, denoted T . From

their search, the examiner makes an error ε, denominated as a proportional error in interpreting
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claim distance (i.e. ε = 1.2 means a 20% overestimation of claim distance). The distribution of

ε is N(1+µ(T ), σ2(T )), where µ(T ) is positive and decreasing in T . The intuition for the mean

decreasing in T towards one is that for any finite time spent reading, the examiner may miss

relevant content, and more time reading reveals more relevant content. However, the examiner

may misinterpret what they read, which can lead to realizations of errors below one. We also

assume that the variance is decreasing in T .

The examiner pays a search cost c(T ), increasing and convex in time spent T .3 The examiner

wants to minimize their mean-squared error of search, defined as E = E
[
(ε− 1)2

]
. Examiners

with higher intrinsic motivation experience greater utility costs from search errors, so they mini-

mize H(θ, E), which is increasing in both arguments with positive cross derivative. For simplicity,

we specify this as f(θ)× E . Hence, the examiner solves

min
T

f(θ)

∫
(ε− 1)2ϕ

(
ε− µ

σ

)
dε+ c(T )

The first order condition is

c′(T )− f(θ)

∫
(ε− 1)2

(
ε− µ

σ

)
ϕ

(
ε− µ

σ

)
Z(T , ε)dε︸ ︷︷ ︸

X(T )

= 0

where Z(T , ε) =
d

dT

(
ε− µ

σ

)
. The second order condition requires c′′(T )− f(θ)X ′(T ) > 0. We

assume this condition is met.4 Differentiating the first order condition with respect to θ yields

dT
dθ

=
f ′(θ)X(T )

c′′ − f(θ)X ′(T )
≥ 0.

The inequality follows from the fact that f is increasing in θ and X is non-negative. These

comparative statics indicate that the moments of the error distribution µ(θ) and σ(θ) decline

with intrinsic motivation.

D Examiner Credit Structure

Here, we provide expressions for gry(S, T ), for y ∈ {GR, ABN, REJ, FIGHT}. We write

gry(S, T ) = νry · c(S, T ) and detail the values of the raw credit terms νry and the adjustment

terms c(S, T ) in turn. Granting in the first round gives the examiner a payoff of ν1GR = 2 cred-

its. Rejecting in the first round gives ν1REJ = 1.25. If the applicant abandons in round one,

3We can also let the cost depend on an examiner’s productivity without any adjustment to the results.
4There will be conditions on µ(T ) and σ(T ) such that the second order conditions hold. We can derive sufficient

conditions in the case in which µ depends on T but σ does not, and the case in which σ depends on T but µ does

not. Details are available on request.
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Table D.1. Seniority Corrections for Examiner Credit Adjustments

Seniority Grade Signatory Authority cSEN (S)

GS-5 None 0.55

GS-7 None 0.7

GS-9 None 0.8

GS-11 None 0.9

GS-12 None 1.0

GS-13 None 1.15

GS-13 Partial 1.25

GS-14 Partial 1.25

GS-14 Full (primary examiner) 1.35

Notes: This table provides the seniority factors for credit adjustment.

In the empirical work, we use 1.15 for GS-13 and 1.25 for GS-14.

the examiner obtains ν1ABN = 0.75. Since grFIGHT is only received upon submission of an RCE,

vrFIGHT = 0 for all odd r. Granting in the second round gives ν2GR = 0.75 credits. Rejecting

in the second round gives ν2REJ = 0.25 credits, with an extra ν2ABN = ν2FIGHT = 0.5 credits

whether the applicant abandons or continues to an RCE. Ultimately, the examiner obtains two

credits irrespective of what happens in the first two rounds. The only difference is whether they

get the credits immediately (say, from an immediate grant) or spread out over two rounds.

The structure of the payoffs in the first RCE is the same, with ν3ABN = 0.75, except ν3GR = 1.75

and ν3REJ = 1. Similar to before, ν4GR = 0.75. In the first RCE, irrespective of what occurs,

the examiner will obtain 1.75 credits. The distinction is whether examiners earn the full 1.75

credits immediately by granting, or one credit from their non-final rejection and ν4REJ = 0.25 plus

ν4ABN = ν4FIGHT = 0.5 credits from the applicant’s response. In the second and any subsequent

RCEs, the structure of the payoffs is same, except ν2r+1
ABN = ν2r+1

REJ = 0.75 and ν2r+1
GR = 1.5 (r > 1).

There is no difference for ν2r+2
GR = 0.75, ν2r+2

REJ = 0.25, and ν2r+2
ABN = ν2r+2

FIGHT = 0.5 (r > 1).

Seniority and Technology Complexity Adjustments

The seniority and technology complexity adjustment term is c(S, T ) = cTECH(T )
cSEN (S) . Table D.1 gives

the values of cSEN (S) across the GS categories. Higher seniority factors imply larger values of

cSEN and, thus, lower values of credits. Table D.2 gives the values of cTECH(T ) we created for the

different technology centers and used in estimating the model. The Patent Office does not have

adjustments at the technology center level but at the more detailed U.S. Patent Class (USPC)
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Table D.2. Technology Center Corrections for Examiner Credit Adjustments

Technology Center T USPTO Number Correction (cTECH(T ))

Chemical and Materials Engineering 17 22.2

Computer Architecture Software and Information Security 21 31

Computer Networks, Multiplex, Cable and Cryptography/Security 24 29

Communications 26 26.5

Semiconductors, Electrical and Optical Systems and Components 28 21.4

Transportation, Electronic Commerce, Construction, Agriculture... 36 22.4

Mechanical Engineering, Manufacturing and Products 37 19.9

level. We obtained adjustments at the USPC level from the Patent Office and constructed a

patent-application weighted average for each technology center.

E Distance Measure

This section provides extra details on how we construct our distance measure. We also briefly

describe our algorithm choice, the paragraph vector approach.5

Our approach to constructing the distance metric consists of four steps. The first step is text stan-

dardization. We perform basic changes to the content of the text (such as removing stopwords,

punctuation, changing all to lowercase, etc.) and remove words that do not carry informational

content. After standardization, we drop claims with fewer than two words or illegible text.

Second, we use the paragraph vector approach to represent the text of a patent claim as a numer-

ical vector. The paragraph vector involves training a neural network and offers an improvement

on the word vector approach in our context. We implement the paragraph vector approach using

Gensim’s Doc2Vec Python model (Řeh̊uřek and Sojka, 2010). The model is trained to create a

dense vector representation of each independent claim. We use the distributed memory method,

which learns to predict a target word given the words in its context and the document vector.

However, we experimented with the Distributed Bag of Words approach, too. We pass over the

data 18 times in training (i.e., 18 epochs), and our dense vectors have 300 elements.

The third step involves taking every focal patent claim vector and calculating its distance to every

previously granted claim, at the point of grant. We use cosine similarity and angular distance,

5At the time of writing this paper, we used the state-of-the-art approach, but there is a fast-moving frontier.

Novel approaches use GPT-4 or BERT word embeddings integrated directly into neural networks. See Ash and

Hansen (2023) for details on text algorithms.
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which are standard in the text matching and NLP literature. We compute the cosine similarity

(CS) between claim text vectors x and y as

cs(x, y) =

∑
i xiyi√∑

j x
2
j

∑
j y

2
j

.

Then, we calculate the angular distance metric, AD(x, y) = arccos(cs(x, y))/π, and finally, double

AD to obtain a normalized distance in the interval [0, 1]. With all distances computed, the final

step is to find the closest claim. As robustness, we experimented with using an average of five

closest distances. The resulting distance distribution was similar.

F Moment Selection

First, we provide a broad set of moments we could use to estimate our model. Then, we give

information the methods we use to prune moments from the full set.

Available Moments

We have seven sets of moments available, which we describe in turn. Our first group of moments

corresponds to examiners’ issuance and applicants’ abandonment decisions. For each round in

the model and each seniority level, we calculate the proportion of applications examiners grant

and the proportion that applicants abandon. Across nine seniority grades and six rounds, this

implies 108 moments.

Second, we observe the distribution of the proportion of claims rejected, both by round and

seniority grade. These observations generate another 54 moments. Third, we obtain 4 moments

from the proportion of granted patents that renew at four, eight, and twelve years after issuance.

Fourth, we calculate the distribution of claim distances by round. We calculate the mean and

standard deviation of the distance distribution by round for six rounds, implying 12 moments

on distance. Fifth, we calculate each examiner’s leniency, which is their average rejection rate

across all the applications they examine. Hence, for each seniority grade, we obtain a distribution

of examiner rejection rates, for which we can calculate the mean and standard deviation of the

distribution of examiner’s leniency. From this, we obtain another 18 moments.

Next, given that we can identify the distance threshold externally, we calculate the proportion of

granted patents containing at least one invalid claim. Hence, for each round and each seniority

level, we calculate the proportion of patents granted containing an invalid claim, implying another

54 moments. Another 108 moments come from calculating the mean and standard deviation of
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the size of errors (threshold less granted distance) for each seniority and in each round.6

Finally, we observe the distribution of application fighting costs. We have six moments on the

distribution of legal application fees for four technology categories (simple, chemical, electrical,

and mechanical), which we match to the technology centers on which we estimate the model.

This implies another 24 moments.

Choosing Moments

We have nearly 400 data moments but only 21 parameters to estimate with simulated method

of moments. However, not all moments will aid the estimation procedure in identifying the

parameters, so we prune the set of moments for estimation.

We follow a rigorous, data-driven methodology to create a subset of the moments that best es-

timate the parameters. To do this, we first calculate the sensitivity matrix, described in Section

4.3. If a moment had a negligible value in the sensitivity matrix for all parameters, we consid-

ered it as not useful in estimating our model. Further, as described in Jalali, Rahmandad, and

Ghoddusi (2015), we plot each moment against each parameter, fixing the other parameters at

their estimates. If this curve is flat, this parameter does not influence the value of the moment.

For a given moment, if the curve is flat across all parameters, it suggests that the moment offers

no variation to identify the parameters. We also plot the value of the SMM objective against

each parameter, fixing other parameters at their estimates (see Figure A.3 for examples in the

estimated model). We experiment with moments until the SMM is approximately convex in each

parameter to ensure a well-defined global minimum exists.

By combining the sensitivity matrix with moment and SMM plots, we pruned the moments

down to those that assist in estimating the parameters. Since we split many parameters into two

seniority groups (junior and senior), we split some moments into the same seniority categories.

Full Set of Moments

1. The proportion of applications granted in each round for juniors and seniors, for rounds

one, two, three, and all rounds after four combined [eight moments]

2. The standard deviation of the distribution of examiner rejection rates for the six seniority

categories used by the Patent Office (GS levels 7, 9, 11, 12, 13, and 14) [six moments]

3. The proportion of patents granted containing an invalid claim (for juniors and seniors) for

rounds one and two [four moments]

6To calculate these moments, we take the subset of claims for which the granted distance D̃j is below the

distance threshold τ , and then work out the mean and variance of τ − D̃j , which represents the size of the error.
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4. The mean and standard deviation of the error size for juniors and seniors [four moments]

5. The proportion of abandonments in each round, when the assigned examiner is junior and

senior, for rounds one and two [four moments]

6. The proportion of granted patents not renewed, renewed at year four but not eight, renewed

at year eight but not twelve, and renewed at year twelve [four moments]

7. The mean and standard deviation of the distribution of granted claim distances for rounds

one, two, and three [six moments]

8. Mean and median of legal application fees for simple applications and complex applications

in electrical, mechanical, and chemical technologies [eight moments]

G Quantification of Social Costs

G.1 Type 1 Social Cost

Type 1 social cost includes two components: litigation costs for litigated patents and deadweight

loss for non-litigated patents. Based on the probability of litigation, as discussed in the main

text, the expected social cost of granting an invalid patent s of value Ṽs is

S1s = IsDWLs + (1− Is)
[
0.837 ·DWLs + 0.163 · 2C(Ṽs)

]
, (G.1)

where DWL is the deadweight loss given in the text and Is = 1(Ṽs ≤ V̌ ) represents a dummy

equal to one if the patent’s value exceeds the exposure threshold. Then, the total type 1 cost is

T1 =
∑
s∈SG

E1sS1s

where E1s is equal to one if a granted application s ∈ SG is invalid and zero otherwise.

Details on Deadweight Loss Calibration

From the main text, we have that

DWL =
1

2
∆℘∆q =

1

2

∆q

q
q∆℘ =

λ

2

∆℘

℘
Ṽ ,

by the definitions of Ṽ and λ. We calibrate the term ∆℘/℘ using the following derivation:

∆℘

℘
=

q∆℘

q℘
=

lic. rev

sales
=

lic. rev

R&D
· R&D

sales

As described in the text, we refer to Schankerman and Schuett (2022) for the ratio of licensing

revenue to R&D and data from the Bureau of Economic Analysis for the ratio of R&D to sales.

Deadweight Loss Extension to Cournot Competition

19



In the main text, we compute deadweight loss from a patented invention assuming symmetric

licensees operate in a perfectly competitive industry. Suppose instead that the licensees compete

in a Cournot setting. By standard calculations, the equilibrium price-cost margin is
℘− c

℘
=

m∗

λ
where m∗ = 1

N is the average market share, and λ is the demand elasticity. We write this as
℘−c
℘ = He

λ where He is the symmetric-equivalent Herfindahl index (HHI) of concentration. Thus,

for He < 1, we have ℘ = c
1−He

λ

.

With imperfect competition, the change in equilibrium price is larger than the Arrow royalty

due to double marginalization: ∆℘ = ∆c
1−He

λ

> ∆c. The associated deadweight loss with Cournot

competition is

DWLcournot =
1

2
∆℘∆q =

1

2

∆c

1− He

λ

∆q = DWLpc ·
1

1− He

λ

,

where in this case, Ṽ = q∆c denotes total royalty payments. Since He ∈ (0, 1) and |λ| > 1,

deadweight loss in this imperfect competition setting is larger than under perfect competition.

Using U.S. Census data for 2007, the value-added weighted-average HHI for manufacturing in-

dustries based on the 50 largest firms, H, for manufacturing sectors is 0.05. As is well-known, the

HHI can be decomposed as H = 1
N +N ·Var(m) = He+N ·Var(m), where m is the market share

of each firm. Thus, the observed H overstates the unobserved He, so the computed deadweight

loss will be an upper bound to the true value of DWL. Despite this, the upper bound for the

Cournot setting is not materially different from the competitive case in the text.

The value ofH varies widely across industries. We do not compute deadweight loss using industry-

specific values because it is challenging to assign patents in different patent classes to industries,

and the existing Patent Office concordance is problematic (e.g., the mapping is not unique).

Calibrating Litigation Costs

To calibrate litigation costs, C(Ṽ ), we use data from the American Intellectual Property Law

Association (AIPLA) surveys on litigation costs as a function of the value at stake, which we

assume is the same for the patentee and challenger. We use the linear specification C(Ṽ ) =

ℓ0+ℓ1Ṽ . Using this same specification, Schankerman and Schuett (2022) estimate ℓ0 = $624, 000

and ℓ1 = 0.162 (2018 USD). This calibration of legal costs is at the patent, not claim, level.

Implementation of Type 1 Social Cost

A key challenge in implementing our calculation of type 1 social costs is that the estimates of the

value of patent rights for invalid patents include potential litigation costs. To impute the “value

at stake” in litigation for these patents, we adjust our methodology to exclude these costs.
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To make this adjustment, we make two assumptions:

A1: Valid patents are not litigated. This assumption holds in a model with perfect courts, where

a competitor either knows or pays a fee to discover whether a patent is valid, and then

chooses whether to litigate based on the result. This assumption allows us to calculate the

value of patent rights for valid patents, Ṽ , as equal to the observed value, since there are

no litigation costs to net out.

A2: The distribution of the value at stake, GṼ (·), is the same for valid patents as invalid patents.

The basis for this assumption is that initial distances and values are uncorrelated in the

model. This assumption allows us to draw values from the observed distribution of Ṽ = V

for valid patents and use them as draws from the distribution of Ṽ for invalid patents.

Given A1 and A2, the procedure for calculating type 1 social costs is as follows:

1. Estimate the parameters of a log-normal distribution for the value at stake for valid

patents.7 Let the estimated distribution be denoted as ĜṼ (·).

2. Let P̄ be the total number of invalid patent grants for the given period we simulate. Then,

for each p = 1, . . . , P̄ :

(a) Take a draw from the estimated distribution of valid patents’ value at stake (ex post

value), ĜṼ (·), to represent the value at stake for the invalid patent p

(b) Using the draw, calculate S1p from Equation (G.1).

3. Calculate the total social cost of type 1 error as
P̄∑

p=1

S1p.

Finally, note that we calculate the threshold for exposure to litigation from the empirical distri-

bution of the value at stake for valid patents, ĜṼ (·).

G.2 Type 2 Social Costs

Implementing Type 2 Social Cost Calculation

The primary challenge in calculating type 2 social costs comes from calibrating the value of

the invention without patent rights (Π). This task is particularly difficult for inventions with a

negative expected value of applying for a patent (Γ∗), where we cannot use the patent premium.

In a similar vein to our approach to type 1 social costs, we assume that the distributions of Π for

those with positive and negative Γ∗ are the same and then draw values of Π from this distribution

7The sum of log-normal terms is approximately log-normal, which our simulation displays (Dufresne, 2004).
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for those inventions for which Γ∗ is negative. To be precise, our specific implementation is:

1. Draw a pilot set of potential inventions, to calculate a distribution of Π. Run this set of

potential inventions through the model and calculate Γ∗. For those with positive Γ∗, create

a distribution of Π using the relationship Γ∗ = ΨΠ, where Ψ is the patent premium.

2. Start the simulation for type 2 social costs by drawing a new set of potential inventions

(returns, distances, number of claims, fighting costs, examiner, etc.). For each potential

invention i, calculate Γ∗
i . If Γ

∗
i > 0, calculate Πi =

Γ∗
i

Ψ
. If Γ∗

i ≤ 0, draw a value of Πi from

the distribution calculated in step 1. Also, draw a development cost κi.

3. For each of the potential inventions i, work out the subset ℓ = 1, . . . , Ino dev that do not

develop as those with max{Γ∗
ℓ , 0}+Πℓ < κℓ

4. For ℓ = 1 . . . , Ino dev, run the potential invention through a model where, at the point of

abandonment, the inventor obtains all valid claims they have, and so obtains the patent

value of their valid claims, instead of a payoff of zero. By definition, this scenario has the

property that all abandoned claims are invalid so that there is no type 2 error. Let Γ′
ℓ

denote the expected value of patent rights in this new scenario.

5. From ℓ = 1 . . . , Ino dev, calculate the subset m = 1, . . . , Inow dev who have max{0,Γ′
m} +

Πm ≥ κm. This is the set of potential inventions that do not develop with type 2 error but

would develop in the absence of type 2 error.

6. For m = 1, . . . , Inow dev, calculate SNBm =
ρsoc
ρpriv

(
max{0,Γ∗

m}+Πm

)
− κm and calculate

the total type 2 social cost as

T2 =

Inow dev∑
m=1

SNBm.

Calibrating Development Costs

We apply the estimates of development costs from Schankerman and Schuett (2022) to our

context. They assume that development costs κ are exponential, with mean equal to k0 + k1z,

where z is the size reduction of the invention and k0 and k1 are estimated as 254.6×103 and 2.33×
1010, respectively. Regarding the size reduction, they assume that z is log-logistic distributed with

parameters β0 = 1.02 and β1 = 1.14× 10−6. We use the mean value of z in our calibration.

In the baseline quantification, we draw values of κ from the distribution described above, which

assumes that development costs are independent of Γ∗ and Ψ. In this model, inventors know their

development costs before they decide to develop their idea. We also experiment with another

model, which makes the opposite assumption that inventors do not know their development costs

and thus use the mean value, κ̄ = k0 + k1z̄, to make their development decision. Both models
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produce similar conclusions; results are available upon request.

Calibrating the Number of Ideas

To compute the number of ideas, we start with the average annual number of utility patent

applications in the period 2011–2013. We convert this into the number of ideas in two steps. First,

we use the estimates from Schankerman and Schuett (2022) that about two-thirds of applications

are “low type” inventions (defined by them as those that would have been developed even without

patent protection), and second, that one-third of ideas become a low type application. Together,

this implies about one million ideas for potential inventions for the cohort of applications.

G.3 Patent Prosecution Costs

The amendment cost for application s is the per-negotiation cost Famend,s drawn from the esti-

mated distribution, multiplied by the equilibrium number of negotiations for application s (equal

to the number of rounds rs minus 1). We also include the fixed application attorney cost Fapp,s

implied by the equilibrium padding choice. For administrative costs, we calculate the average

Patent Office cost per round and claim, denoted RCC, and multiply it by the number of rounds

rs and claims M0,s. Then, the total social cost of patent prosecution is

T3 =
∑
s

Fapp,s + (rs − 1)Famend,s︸ ︷︷ ︸
Attorney Costs

+
∑
s

M0,srsRCC.︸ ︷︷ ︸
Administrative Costs
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