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A Additional Tables and Figures

Table A.1. Summary Statistics

Variable Observations Mean Median Std. Dev.

Issued 4,846,053 0.70 1.00 0.46

Duration of Prosecution (years) 4,846,053 2.96 2.67 1.57

Number of Rounds 4,608,833 2.40 2.00 1.45

Independent Claims 3,838,553 2.99 3.00 2.94

Small Entity 4,781,012 0.24 0.00 0.43

Not Renewed at 4 410,667 0.13 0.00 0.33

Renewed at 4, not at 8 410,667 0.19 0.00 0.39

Renewed at 8, not at 12 410,667 0.23 0.00 0.42

Renewed at 12 410,667 0.46 0.00 0.50

Notes: Sample sizes are lower for rounds, claims, and examiner variables since

the datasets containing these variables cover a subset of the years 2001-2017. On

renewal variables, we restrict attention to patents granted before 2006 to ensure

that we have full renewal data on all granted patents. Categorical variables may

not sum to one due to rounding.
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Table A.2. Estimated and Assigned Parameters

Estimated Parameters

Variable Notation Distribution Parameters

Examiner

Intrinsic motivation θ ∼ GS,θ(·) Log-normal σθ, µθ,junior or µθ,senior

Examiner Delay Cost π ∼ Gπ(·) Log-normal µπ , σπ

Error ε ∼ Ge,ε(·) Normal σε

Applicant

Initial claim returns v∗j ∼ Gv(·) Log-normal µv , σv

Initial claim distances D∗
j ∼ GD(·) Beta αD, βD

Obsolescence ω Bernoulli Pω,pre or Pω,post

Application legal costs fapp Log-normal µf,app, σf,app

Issuance legal costs fiss Log-normal µf,iss, σf,iss

Maintenance legal costs fmain Log-normal µf,main, σf,main

Amendment legal costs famend Log-normal µf,amend, σf,amend

Narrowing η - -

Assigned Parameters

Variable Notation Values

Discount rate β 0.95

Depreciation δ
0.14−Pω,post

1−Pω,post

Threshold by technology center τ Range from 0.48 to 0.52

Credits gr(S, T ) -

Finalizing fee ϕ $2,268

RCE fees F 3
round = F 5

round $1,034

F4 $1,685

Renewal fees F8 $3,791

F12 $7,792

Table A.3. Application Fighting Costs by Technology Area

Parameter Symbol Estimate S.E.

Chemical application fighting cost log-mean µf,chem 9.15 0.008

Chemical application fighting cost log-sigma σf,chem 0.38 0.010

Electrical application fighting cost log-mean µf,elec 9.18 0.010

Electrical application fighting cost log-sigma σf,elec 0.57 0.014

Mechanical application fighting cost log-mean µf,mech 9.02 0.008

Mechanical application fighting cost log-sigma σf,mech 0.47 0.011

Notes: Standard errors are bootstrapped.
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Table A.4. Applicant Fighting Costs by Technology Area

Parameter Symbol Estimate

Simple amendment fighting cost log-mean µf,amend,simp 7.60

Simple amendment fighting cost log-sigma σf,amend,simp 0.37

Chemical amendment fighting cost log-mean µf,amend,chem 8.13

Chemical amendment fighting cost log-sigma σf,amend,chem 0.45

Electrical amendment fighting cost log-mean µf,amend,elec 8.07

Electrical amendment fighting cost log-sigma σf,amend,elec 0.38

Mechanical amendment fighting cost log-mean µf,amend,mech 7.95

Mechanical amendment fighting cost log-sigma σf,amend,mech 0.43

Issuance cost log-mean µf,iss 6.54

Issuance cost log-sigma σf,iss 0.62

Maintenance cost log-mean µf,main 5.67

Maintenance cost log-sigma σf,main 0.46
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Table A.5. Robustness of Estimates

Parameter Symbol Baseline 1% τ 5% τ β = 0.99 Definition of Seniority

(GS13 + GS14)

Junior intrinsic motivation log-mean µθ,j 3.92 3.96 3.96 3.90 4.16

Senior intrinsic motivation log-mean µθ,s 3.38 2.90 2.73 3.18 2.93

Intrinsic motivation log-sigma σθ 0.77 0.82 0.79 0.90 0.99

Examiner delay cost log-mean µπ 0.19 0.16 0.18 0.49 0.12

Examiner delay cost log-sigma σπ 0.27 0.37 0.42 0.10 0.60

Error standard deviation σε 0.02 0.02 0.02 0.03 0.02

Initial returns log-mean µv 10.55 10.59 10.88 10.07 10.28

Initial returns log-sigma σv 1.32 1.13 1.61 2.94 0.57

Initial distance alpha αD 4.57 3.92 3.90 4.56 3.75

Initial distance beta βD 7.74 6.72 6.22 7.79 7.15

Narrowing probability η 0.75 0.73 0.74 0.75 0.72

Application obsolescence probability Pω,pre 0.14 0.13 0.13 0.12 0.14

Renewal obsolescence probability Pω,post 0.04 0.04 0.04 0.04 0.04

Simple application fighting cost log-mean µf,simple 8.53 8.43 8.56 8.60 8.53

Simple application fighting cost log-sigma σf,simple 0.87 0.97 0.79 0.74 0.95

SMM Objective 1.23 1.47 1.29 1.25 1.33

Notes: This table provides estimates of the model parameters across various model alternatives. The baseline model defines

senior examiners as those at the GS14 level. The last column expands this to include GS13 and GS14.
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Table A.6. Net Social Costs of Patent Prosecution: Robustness

Patent Premium (ξ) = 0.10 Patent Premium (ξ) = 0.05

Counterfactual T1 T2 (1.5) T3 Total T1 T2 (1.5) T2 (2.0) T3 Total (1.5) Total (2.0)

Baseline ($Bn) 6.4 0.7 17.6 24.7 6.6 0.0 0.2 20.6 27.2 27.4

25K Round Fee 5.9 1.8 16.4 24.1 6.3 0.7 1.4 19.1 26.1 26.8

50K Round Fee 6.1 3.1 15.1 24.2 5.5 1.7 3.5 17.1 24.7 26.1

Three Rounds 4.9 4.8 10.2 19.8 5.4 1.9 3.9 11.5 18.8 20.8

Two Rounds 2.9 7.4 4.7 14.9 2.9 3.2 6.6 5.2 11.4 14.8

One Round 0.0 6.3 0.7 7.0 0.0 1.6 3.3 0.8 2.4 4.1

15% IM 29.0 1.1 15.0 45.1 31.6 0.4 0.8 17.3 50.1 49.8

Credit↘ 6.4 0.7 17.6 24.7 6.5 0.0 0.2 20.6 27.2 27.3

Credit↘ + 15% IM 24.3 1.9 15.8 42.0 23.7 0.7 1.5 18.2 47.8 43.3

Notes: This table provides the values of net social costs for alternative values of the patent premium and social multiplier. Columns denoted T2

(1.5) and T2 (2.0) provide values of type 2 net social costs when ρsoc
ρpriv

is equal to 1.5 and 2.0, respectively. Columns Total (1.5) and Total (2.0)

provide the total net social costs when ρsoc
ρpriv

is equal to 1.5 and 2.0, respectively.

5



Figure A.1. Match of internal data and model moments
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Figure A.2. Match of external data and model moments

Round 1 rejection rate GS 13 mean

Round 1 rejection rate GS 13 75th

Round 1 rejection rate GS 13 25th

Round 1 rejection rate GS 12 mean

Round 1 rejection rate GS 12 75th

Round 1 rejection rate GS 12 25th

Round 1 rejection rate GS 11 mean

Round 1 rejection rate GS 11 75th

Round 1 rejection rate GS 11 25th

Round 1 rejection rate GS 09 mean

Round 1 rejection rate GS 09 75th

Round 1 rejection rate GS 09 25th

Number of rounds skewness

Number of rounds kurtosis

Granted claims distance round 6 sd

Granted claims distance round 6 mean

Granted claims distance round 6 75th

Granted claims distance round 6 25th

Granted claims distance round 5 sd

Granted claims distance round 5 mean

Granted claims distance round 5 75th

Granted claims distance round 5 25th

Granted claims distance round 4 sd

Granted claims distance round 4 mean

Granted claims distance round 4 75th

Granted claims distance round 4 25th

Granted claims distance round 3 75th

Granted claims distance round 3 25th

Granted claims distance round 2 75th

Granted claims distance round 2 25th

Granted claims distance round 1 75th

Granted claims distance round 1 25th

0.0 0.5 1.0

Moment Data Model

Model and Data Moments: External

7



B Data Sources

If the links are broken, the documents are available upon request.

B.1 Publicly Available Datasets

1. U.S.PTO Patent Application Claims Full Text Dataset and U.S. PTO Patent Claims Full

Text Dataset : https://www.uspto.gov/learning-and-resources/electronic-data-p

roducts/patent-claims-research-dataset

2. Patent Examination Research Dataset : https://www.uspto.gov/ip-policy/economic-r

esearch/research-datasets/patent-examination-research-dataset-public-pair

3. U.S.PTO Maintenance Fee Events Dataset : https://developer.uspto.gov/product/pa

tent-maintenance-fee-events-and-description-files

4. U.S.PTO Office Action Research Dataset : https://www.uspto.gov/ip-policy/econom

ic-research/research-datasets/office-action-research-dataset-patents

5. Frakes and Wasserman (2019): https://dataverse.harvard.edu/dataset.xhtml?pers

istentId=doi:10.7910/DVN/ABE7VS

B.2 Data from Public Documents

6. GDP Deflator: https://fred.stlouisfed.org/series/GDPDEF.

7. AIPLA Report of the Economic Survey : See https://www.aipla.org/detail/journal

-issue/economic-survey-2017 for 2017.

8. Industry concentration: https://www.census.gov/content/dam/Census/programs-sur

veys/economic-census/data/archived_tables/2007/sector31/2007_31-33_Con_Ra

tios_US.zip.

9. Patent Office fees: https://www.govinfo.gov/content/pkg/CFR-2011-title37-vol1/

pdf/CFR-2011-title37-vol1.pdf or from https://www.uspto.gov/sites/default/fi

les/aia_implementation/AC54_Final_Table_of_Patent_Fee_Changes.pdf.

10. Patent operations costs:

2005: https://www.uspto.gov/sites/default/files/about/stratplan/ar/USPTOFY

2005PAR.pdf

2010: https://www.uspto.gov/sites/default/files/about/stratplan/ar/USPTOFY

2010PAR.pdf
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2015: https://www.uspto.gov/sites/default/files/documents/USPTOFY15PAR.pdf

11. Patent applications: https://www.uspto.gov/web/offices/ac/ido/oeip/taf/us_sta

t.htm.

12. R&D expenditures: https://www.nsf.gov/statistics/infbrief/nsf14307/.

C Distance Measure

This section provides details on how we construct our patent distance metric. We describe our

preferred choice, the paragraph vector approach.1 The method consists of four steps: (1) stan-

dardizing the independent claim text, (2) turning the text into a numerical vector, (3) calculating

the distances between a focal patent claim on an application to all existing granted patent claims

and (4) calculating the distance to the closest existing independent claim.

The first step before converting text into a numerical vector is text standardization. We perform

basic changes to the content of the text and remove words that carry no informational content.

Once we standardize the text, we drop any claims with fewer than two words or illegible text.

We use the paragraph vector approach to represent the text of a patent claim as a numerical

vector. The paragraph vector approach is an improvement of the word vector approach. We

implement the Paragraph Vector approach using Gensim’s Doc2Vec Python model (Řeh̊uřek and

Sojka, 2010).

The step above converts all patent claims, including those on applications and those granted,

into a numerical vector. The next step involves taking every focal application patent claim vector

and calculating its distance to every existing granted claim at the point of application. After

representing a patent claim’s text as a numerical vector, we use cosine similarity and angular

distance, both of which are standard in the text matching and the NLP literature. We compute

the cosine similarity (CS) between claim text vectors x and y as

cs(x, y) =

∑
i xiyi√∑

j x
2
j

∑
j y

2
j

.

Then, we calculate the angular distance (AD) metric, AD(x, y) = arccos(cs(x, y))/π and then

double AD to obtain a normalized distance in the interval [0, 1].

1At the time of writing this paper, we used the state-of-the-art approach, but there is a fast-moving frontier.

The most recent approaches use GPT-4 or BERT word embeddings integrated directly into Neural Networks. See

Elliot and Hansen (2023) for details on text algorithms.
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With all distances computed, it is a simple step to find the closest 50 claims to each application.

We experiment with different choices on which percentile of the closest 50 distances to use.

We also experimented with taking an average of the five closest distances for example, and the

resulting distances were similar.

D Descriptive Results

We show how patent application outcomes vary with technology center and examiner seniority.

First, we regress a binary variable equal to one if the application process lasts more than one

round against fixed effects for examiner seniority grade, technology center, year of application,

and a small entity indicator (applying firm having fewer than 500 employees). The results in

Column (1) of Table D.1 reveal substantial variation across technology centers; e.g., Computer

Networks (TC-24) has a 12 percentage point higher likelihood of multi-round negotiation than the

reference category, Biotechnology (TC-16). Further, the likelihood of any negotiation decreases

with the seniority of the examiner, with senior (GS-14) examiners nine percentage points less

likely to require negotiation relative to the most junior, holding technology center and application

year fixed. Further, small entities are 12 percentage points less likely to negotiate (all else fixed).

In Column (2), we do the same analysis for the dependent variable equal to one if the examiner

grants a patent. We match the findings of Frakes and Wasserman (2017) – senior examiners are

more likely to grant and grant rates vary substantially across technology centers. In our model,

we explain this variation by letting the distribution of intrinsic motivation vary with seniority

level, by incorporating differences in the credit structure for examiners that vary across seniority

and technology centers, and by allowing fighting costs to differ for applicants, with technology

category-specific distributions. Our parameter estimates enable us to disentangle the effects of

these factors in explaining the variation in outcomes, as we discuss in the text.
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Table D.1. Regression Results

(1) (2)

Variable Negotiation Grant

Intercept 0.7433 (0.006) 0.542 (0.005)

GS-7 -0.002 (0.004) 0.003 (0.005)

GS-9 -0.016 (0.004) 0.035 (0.004)

GS-11 -0.020 (0.004) 0.066 (0.004)

GS-12 -0.034 (0.004) 0.092 (0.004)

GS-13 -0.045 (0.004) 0.126 (0.004)

GS-14 -0.091 (0.004) 0.178 (0.004)

Chemicals (17) 0.064 (0.002) 0.067 (0.002)

Comp. Software (21) 0.105 (0.002) 0.196 (0.002)

Comp. Networks (24) 0.123 (0.002) 0.192 (0.002)

Communications (26) 0.047 (0.002) 0.198 (0.002)

Electronics (28) -0.010 (0.001) 0.244 (0.001)

Other (36) 0.065 (0.002) 0.136 (0.002)

Mech Engineering (37) 0.042 (0.002) 0.139 (0.001)

Small Entity -0.120 (0.001) -0.170 (0.001)

Year FE Yes Yes

N 1,641,333 1,759,313

Notes: Omitted grade is GS-5 and omitted technology center is Biotechnology

and Organic Fields (16). Technology center “Other” refers to Center 3600, which

is “Transportation, Electronic Commerce, Construction, Agriculture, Licensing

and Review.” Following Frakes and Wasserman (2017), we omit GS-15 grade

examiners. We report heteroskedasticity robust (HC1) standard errors in paren-

theses.

These results show stark differences in average grant rates and likelihood of negotiation across

technology centers and examiner seniority grades. Next, we investigate the variation in examiner-

specific decisions within and between seniority grades and technology center pairs. To do this, we

calculate examiner-specific outcomes (average grant rates, number of rounds, length of examina-

tion period, probability of negotiation, etc.) within each seniority grade examiners are in at the

time. We decompose the variation in these examiner averages into within and between seniority

grade-technology center pairs by introducing dummies for each seniority-grade-technology-center

dyad in Table D.2. The proportion of within-group variation in examiner grant rates is 80%, im-
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Table D.2. ANOVA Results

Variable Grade × TC Fixed Effects

Grant rate 79.84

Duration of examination (years) 75.79

Number of rounds 80.89

No negotiation (one round) 89.53

Independent claims granted 74.93

Notes: For each variable y, and an examiner e when they are in seniority grade

S and technology center T , we calculate ȳeST . Then we regress ȳeST on a set of

interactive dummies for seniority grade and technology center. We report 1−R2

(as a percentage) for these regressions, thereby providing the proportion of within

group variation.

plying substantial variation in examiner grant rates not explained by seniority and technology

centers. Our model explains this variation in examiner-specific grant rates within the technology

center and seniority groups by incorporating group-specific distributions of examiner intrinsic

motivation and costs of delay.

E Examiner Credit Structure

Here we provide expressions for grGR(S, T ), g
r
ABN (S, T ), grRCE(S, T ) and grREJ(S, T ). For y ∈

{GR, ABN, REJ, RCE}, we write gry(S, T ) = νry · c(S, T ), and give expressions for νry and

c(S, T ) separately.

E.1 Credits

Granting in the first round gives the examiner a payoff of ν1GR = 2 credits. Rejecting in the

first round gives ν1REJ = 1.25. If the applicant abandons in round one, the examiner obtains

ν1ABN = 0.75. Granting in the second round gives ν2GR = 0.75 credits. Rejecting in the second

round gives ν2REJ = 0.25 credits, with an extra ν2ABN = ν2RCE = 0.5 credits whether the applicant

abandons or continues to an RCE. Ultimately, the examiner obtains two credits irrespective of

what happens in the first two rounds. The only difference is whether they obtain the credits

immediately (say, from an immediate grant) or spread out over two rounds.

The structure of the payoffs in the first RCE are the same, except ν3REJ = 1 and ν3GR = 1.75. In

this case, irrespective of what happens in the RCE, the examiner will obtain 1.75 credits. The
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Table E.1. Seniority Corrections

Seniority Grade Signatory Authority cSEN (S)

GS-5 None 0.55

GS-7 None 0.7

GS-9 None 0.8

GS-11 None 0.9

GS-12 None 1.0

GS-13 None 1.15

GS-13 Partial 1.25

GS-14 Partial 1.25

GS-14 Full (primary examiner) 1.35

Notes: This table provides the seniority factors for credit adjustment.

In the empirical work, we use 1.15 for GS-13 and 1.25 for GS-14.

difference comes from whether they receive all 1.75 credits at once by granting, or 1 credit from

their non-final rejection and ν4REJ = 0.25 plus ν4ABN = ν4RCE = 0.5 credits from the applicant’s

response.

In the second and any subsequent RCEs, the structure of the payoffs is still the same, except

ν2r+1
REJ = 0.75 and ν2r+1

GR = 1.5 (r > 1). As before, the examiner will receive 1.5 credits from second

and subsequent RCEs. The difference comes from whether they receive all 1.5 credits at once from

granting, or 0.75 credits from their non-final rejection and ν2r+2
REJ = 0.25 plus ν2r+2

ABN = ν2r+2
RCE = 0.5

credits from the applicant’s response.

E.2 Seniority and Technology Complexity Adjustments

The seniority and technology complexity adjustment term is

c(S, T ) =
cTECH(T )

cSEN (S)
.

Table E.1 gives the values of cSEN (S) across the GS categories. Higher seniority factors imply

larger values of cSEN , and therefore lower values of credits. Table E.2 gives the values of cTECH(T )

we created for the different technology centers and use in the estimation of the model. The Patent

Office does not have adjustments at the technology center level, but rather at the more detailed

U.S. Patent Class (USPC) level. We obtained the adjustments at the USPC level from the Patent

Office and constructed a patent-application weighted average for each technology center.
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Table E.2. Technology Center Adjustments

Technology Center T U.S.PTO Number Correction (cTECH(T ))

Chemical and Materials Engineering 17 22.2

Computer Architecture Software and Information Security 21 31

Computer Networks, Multiplex, Cable and Cryptography/Security 24 29

Communications 26 26.5

Semiconductors, Electrical and Optical Systems and Components 28 21.4

Transportation, Electronic Commerce, Construction, Agriculture... 36 22.4

Mechanical Engineering, Manufacturing and Products 37 19.9

F Moment Selection and Identification Intuition

First, we provide further details on the possible moments we could use to estimate our model.

Then, we provide some information on our methods to prune moments from the full set. Finally,

we provide some intuition on how the moments identify the model parameters.

F.1 Available Moments

We have seven sets of moments available, which we describe in turn.

Our first group of moments corresponds to examiners’ issuance and applicants’ abandonment

decisions. For each round in the model and each seniority level, we calculate the proportion of

applications examiners grant and the proportion that applicants abandon. Since there are nine

seniority grade-signatory authority pairs, and we observe at least six rounds, this implies at least

108 moments on grants and abandonments.

Second, we observe the distribution of the proportion of claims rejected, both by round (six)

and by seniority grade-signatory authority pair (nine). These observations generate another 54

moments. Third, we observe the proportion of granted patents that renew at four, eight, and

twelve years after issuance. These observations generate four moments on patent renewals (don’t

renew at four, renew at four but not eight, renew at eight but not twelve and renew at twelve).

Fourth, we calculate the distribution of claim distances by round. We calculate the mean and

standard deviation of the distance distribution by round for at least six rounds, implying at

least 12 moments on distance. Another moment comes from the within-application distance

correlation. Fifth, at each of the nine seniority grades, we calculate each examiner’s leniency,

which is their average rejection rate across all the applications they examine. Hence for each

seniority grade-signatory authority pair, we obtain a distribution of examiner rejection rates, for
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which we can calculate the mean and standard deviation of the distribution of examiner fixed

effects. From this we obtain another 18 moments.

Next, given that we can identify the distance threshold externally, we calculate the proportion of

granted patents containing at least one invalid claim (that is, a claim whose distance is below the

distance threshold). Hence, for each round and each seniority level, we calculate the proportion

of patents granted containing an invalid claim, implying another 54 moments.

Finally, we observe the distribution of application fighting costs. We have six moments on the

distribution of legal application fees for four technology categories (simple, chemical, electrical

and mechanical), which we match to the technology centers on which we estimate the model.

This implies another 24 moments.

F.2 Choosing Moments

We have more than two hundred data moments that we can calculate from endogenous variables

in the model. Since we have 21 model parameters to estimate with simulated method of moments,

in principle, we are over-identified. However, not all moments will aid the estimation procedure

in identifying the parameters, so we begin by pruning the set of moments for estimation.

We follow a rigorous, data-driven methodology to create a subset of the moments that best

estimate the parameters. To do this, we calculate the sensitivity matrix described in Andrews,

Gentzkow, and Shapiro (2017). As the authors explain, “sensitivity gives a formal, quantitative

language in which to describe the relative importance of different moments for determining the

value of specific parameters.” If a moment had a small value in the sensitivity matrix for all

parameters, we considered it as not useful in estimating our model. Further, as described in

Jalali, Rahmandad, and Ghoddusi (2015), for each parameter and moment, we plot the value of

the moment for different values of the parameter, fixing the other parameters at their estimates.

If this curve is flat, this parameter does not influence on the value of the moment. For a given

moment, if the curve is flat across all parameters, it suggests that the moment offers no useful

variation to identify the parameters.

For each parameter, we also plot the value of the SMM objective across all values of the parameter,

fixing other parameters at their estimates. Ideally, the SMM will be U-shaped in each parameter

to ensure a well-defined global minimum exists. By doing this, we learn how well we pin down

parameters based on the set of moments we have available.

By combining the sensitivity matrix with moment and SMM plots, we pruned the set of moments
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down to those that offer some assistance in estimating the parameters. Since we split many

parameters into two seniority groups (junior and senior), we split some of our moments into the

same seniority categories.

F.3 Full Set of Moments

The full set of moments we use for estimation is as follows. The selected moments corresponding

to outcomes for examiners are:

(i) The proportion of applications granted in each round for juniors and seniors, for rounds

one, two, three, and all rounds after four combined [eight moments]

(ii) The standard deviation of the distribution of examiner rejection rates for the six seniority

categories used by the Patent Office (GS levels 7, 9, 11, 12, 13, and 14) [six moments]

(iii) The proportion of patents granted containing an invalid claim (for juniors and seniors) for

rounds one and two [four moments]

The moments corresponding to outcomes for applicants are:

(i) The proportion of abandonments in each round, when the assigned examiner is junior and

senior, for rounds one and two [four moments]

(ii) The proportion of granted patents not renewed, renewed at year four but not eight, renewed

at year eight but not twelve, and renewed at year twelve [four moments]

(iii) The mean and standard deviation of the distribution of granted claim distances for rounds

one, two, and three [six moments]

(iv) Mean and median of legal application fees for simple applications and complex applications

in electrical, mechanical, and chemical technologies [eight moments]

F.4 Identification

A model is either point identified or not, and technical conditions on the required variation in

exogenous variables determine whether a model is identified (Andrews, Gentzkow, and Shapiro,

2017). Due to our model’s complicated and nonlinear nature, we cannot calculate these con-

ditions. Identification with simulated method of moments is based on how different moments

are affected by specific parameters. While we cannot identify this link exactly, we provide some

intuition of how moments aid in pinning down specific parameters of the model.

We start with the parameters relating to the applicant. The renewal rates, together with first-

round abandonment decisions, aid in identifying the parameters of the distribution of flow returns,
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i.e., µv and σv. This is because, all else equal, an applicant with higher returns is less likely to

abandon after learning their examiner and more likely to renew their patent, conditional on being

granted. The renewal moments also aid in identifying the post-grant obsolescence probability

Pω,post. Similarly, the ex post claim distribution of padded distances, as calculated using the

distance between text vectors, aids in identifying the parameters of the distribution of ex ante

unpadded distance, i.e., αD and βD. Moments on application fighting costs directly pin down

the distribution of application fighting costs, µfapp , and σfapp .

Regarding pre-grant obsolescence Pω,pre, the only case in which an applicant abandons in interim

rounds two to four is when they become obsolete. If an applicant, upon learning their examiner

calculates that they will want to abandon in any round after the first, they will abandon im-

mediately in round one. Therefore, interim round abandonments offer substantial assistance in

identifying the obsolescence probability in the application process.

Intuition for examiner parameters is more complicated. Observing that examiners grant several

invalid patents could result from low intrinsic motivation, high examiner error, or high examiner

delay costs. Three factors make this challenge less formidable. First, since we assume that only

intrinsic motivation varies by seniority, differences in grant rates and examiner errors by seniority

pick up the value of intrinsic motivation, µim by seniority, and differences in the variation in

examiner-specific grant rates by seniority capture the variation in intrinsic motivation, σθ by

seniority.

Second, we assume that each examiner has the same delay cost across all applications and rounds

but faces varying intrinsic motivation costs at each round of every application (because Rr, the

proportion of invalid independent claims varies across rounds and applications). This implies

that the proportion of invalid patents granted in rounds one and two offer the best assistance

in identifying the mean examiner intrinsic motivation and mean examiner delay costs. Third,

examiner error is two-sided and symmetric. This feature creates cases where examiners do not

grant valid patents, whereas intrinsic motivation and delay costs only incentivize examiners

to grant when they should not. Otherwise, we know that an examiner, making no mistake, and

facing a fully valid patent, will always issue it. Together, this implies that we can use the residual

variation in grant rates (valid and invalid) by round and seniority to learn about the distribution

of examiner error.

F.5 Details on Model Fit

As shown in Figure A.1, we match most of the internal moments well, though there are two

exceptions. The first is the proportion of fully renewed patents, which we overestimate. The
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other exception is the second-round grant rate. This moment is difficult to match with our

model because examiners have incentives to wait until the third round and obtain RCE credits if

they do not choose to grant in the first round. Since examiners have incentives and targets across

applications on their desks (docket management), they are more likely to grant in the second

round than our baseline model predicts.

G Quantification of Social Costs

G.1 Implementing Type 1 Social Cost Calculation

As indicated in the text, a key challenge in implementing our calculation of type 1 social costs

comes from the fact that the estimates of the value of patent rights for invalid patents include

potential litigation costs. To impute the “value at stake” in litigation for these patents, we need

to adjust our methodology to exclude these costs.

To do this, we make two assumptions:

A1: Valid patents are not litigated. This assumption holds in a model with perfect courts, where

a competitor knows (or can pay a fee to discover) whether a patent is valid or not, and then

choose whether to litigate based on the result.2 This assumption allows us to calculate the

value of patent rights for valid patents, Ṽ , as equal to the observed value since there are

no litigation costs to net out.

A2: The distribution of the value at stake, GṼ (·), is the same for valid patents as invalid patents.

The basis for this assumption is that initial distances and values are uncorrelated in the

model. This assumption allows us to draw values from the observed distribution of Ṽ = V

for valid patents and use them as draws from the distribution of Ṽ for invalid patents.

Given A1 and A2, the procedure for calculating type 1 social costs is as follows:

1. Estimate the parameters of a log-normal distribution for the value at stake for valid

patents.3 Let the estimated distribution be denoted as ĜṼ (·).

2This assumption is not at odds with Schankerman and Schuett (2022), where high types are litigated with

some probability even though they will not be invalidated. The important point is that high types in their model

(patents that would not be developed without patent rights) are not the same as valid patents in our model, which

are defined as those with distance larger than the threshold.
3The sum of log-normal distributions is approximately log-normal (Dufresne, 2004), which our simulation here

exhibits.
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2. Let P̄ be the total number of invalid patent grants for the given period we simulate. Then,

for each p = 1, . . . , P̄ :

(a) Take a draw from the estimated distribution of valid patents’ value at stake (ex post

value), ĜṼ (·), to represent the value at stake for the invalid patent p

(b) Using the draw, calculate S1p from Equation (11).

3. Calculate the total social cost of type 1 error as

P̄∑
p=1

S1p.

Finally, note that we calculate the threshold for exposure to litigation from the empirical distri-

bution of the value at stake for valid patents, ĜṼ (·).

G.2 Implementing Type 2 Social Cost Calculation

The primary challenge in implementing our calculation of type 2 social costs comes from cal-

ibrating the value of the invention without patent rights (π), particularly for inventions with

Γ∗ ≤ 0, where we cannot use the patent premium. In a similar vein to our approach to type 1

social costs, we assume that the distributions of π for those with positive and negative Γ∗ are

the same and then draw values of π from this distribution for those inventions.

To be precise, our specific implementation is as follows:

1. Draw a pilot set of potential inventions, used to calculate a distribution of π. Run these

set of potential inventions through the model and calculate Γ∗. For those with positive Γ∗,

create a distribution of π using the relationship Γ = ξπ.

2. Now start the simulation for type 2 social costs by drawing a new set of potential inventions

(returns, distances, number of claims, fighting costs, examiner etc.). For each potential

invention i, calculate Γ∗
i . If Γ

∗
i > 0, calculate πi =

Γ∗
i

ξ
. If Γ∗

i ≤ 0, draw a value of πi from

the distribution calculated in 1. Also, draw a development cost κi.

3. For each of the potential inventions i, work out the set i = 1, . . . , Ino dev that do not develop

as those with max{Γ∗
i , 0}+ πi < κi

4. For i = 1 . . . , Ino dev, run the potential invention through a model where, at the point of

abandonment, the inventor obtains all valid claims they have, and so obtains the patent

value of their valid claims, instead of a payoff of 0. By definition, this scenario has the

property that all abandoned claims are invalid, so that there is no type 2 error. Let Γ′
i

denote the expected value of patent rights in this new scenario.

19



5. For i = 1 . . . , Ino dev, calculate the set i = 1, . . . , Inow dev who have max{0,Γ′
i} + πi ≥ κi.

This is the set who do not develop because of type 2 error but do develop in the absence

of type 2 error.

6. For i = 1, . . . , Inow dev, calculate S2i =
ρsoc
ρpriv

(
max{0,Γi}+ πi

)
−κi and calculate the total

type 2 social cost as

T2 =

Inow dev∑
i=1

S2i.

G.3 Calibrating Deadweight Loss

In the derivation of deadweight loss, note that

DWL =
1

2
∆℘∆q =

1

2

∆q

q
q∆℘ =

λ

2

∆℘

℘
Ṽ ,

by the definitions of Ṽ and λ. Further, note that

∆℘

℘
=

q∆℘

q℘
=

lic. rev

sales
=

lic. rev

R&D
· R&D

sales

As described in the text, we use Schankerman and Schuett (2022) for the ratio of licensing revenue

to R&D, and data from the Bureau of Economic Analysis for the ratio of R&D to sales.

G.4 Deadweight Loss Under Cournot Competition

In the main text, we compute deadweight loss from a patented invention assuming symmetric

licensees operate in a perfectly competitive industry. Suppose instead that the licensees compete

in a Cournot setting. By standard calculations, the equilibrium price-cost margin is
℘− c

℘
=

m∗

λ

where m∗ =
1

N
is the average market share and λ is the demand elasticity. We write this as

℘− c

℘
= He

η where He is the symmetric-equivalent Herfindahl index of concentration. Thus for

He < 1

℘ =
c

1− He

λ

.

With imperfect competition, the change in equilibrium price is larger than the Arrow royalty

due to double marginalization: ∆℘ = ∆c
1−He

λ

> ∆c. The associated deadweight loss with Cournot

competition is

DWLcournot =
1

2
∆℘∆q =

1

2

∆c

1− He

λ

∆q = DWLpc ·
1

1− He

λ

,

where it should be noted that in this case Ṽ = q∆c denotes total royalty payments. Since

He ∈ (0, 1) and we require that |λ| > 1, deadweight loss in this imperfect competition setting is

larger than in perfect competition case.
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Using U.S. Census data for 2007, the value added weighted-average Herfindahl index for manu-

facturing industries (based on the 50 largest firms), H, for manufacturing sectors is 0.05. As is

well-known,the Herfindahl index can be decomposed as H = 1
N +N ·Var(m) = He+N ·Var(m),

where m is the market share of each firm. Thus, the observed H overstates the unobserved He,

so the computed deadweight loss will be an upper bound to the true value of DWL. Despite

this, the upper bound for the Cournot setting is not materially different from the competitive

case in the text.

The value ofH varies widely across industries. We do not compute deadweight loss using industry-

specific values because it is difficult to assign patents in different patent classes to industries,

and the existing Patent Office concordance is problematic (e.g., the mapping is not unique).

G.5 Calibrating Litigation Costs

To calibrate litigation costs, C(Ṽ ), we use data from the American Intellectual Property Law

Association (AIPLA) surveys on litigation costs as a function of (intervals) of the value at stake,

which we assume is the same for the patentee and challenger. We use the linear specification

C(Ṽ ) = ℓ0 + ℓ1Ṽ

Using this same specification, Schankerman and Schuett (2022) estimate ℓ0 = $624, 000 and

ℓ1 = 0.162 (2018 USD). Note that this calibration of legal costs is at the patent, not claim, level.

G.6 Calibrating Development Costs

We apply the estimates from Schankerman and Schuett (2022) to our context. They assume that

development costs κ are exponential, with mean equal to k0+k1s, where s is the size reduction of

the invention and k0 and k1 are estimated as 254.6×103 and 2.33×1010, respectively. Regarding

the size reduction, they assume that s is log-logistic distributed with parameters β0 = 1.02 and

β1 = 1.14× 10−6. We use the mean value of s in our calibration.

In the baseline quantification, we draw values of κ from the distribution described above, which

assumes that development costs are independent of Γ∗ and π. In this model, inventors know their

development costs prior to their decision to develop their idea. We also experiment with another

model, which makes the opposite assumption that inventors do not know their development costs

and thus use the mean value, κ̄ = k0 + k1s̄, to make their development decision. Both models

produce similar conclusions; results are available upon request.
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G.7 Calibrating the Number of Ideas

To compute the number of ideas, we start with the average annual number of utility patent

applications in the period 2011–2013. We convert this number into the number of ideas in two

steps. First, we use the estimates from Schankerman and Schuett (2022) that about two-thirds of

applications are “low type” inventions (defined by them as those that would have been developed

even without patent protection), and second, that one-third of ideas become a low type patent

application. Together, this implies about one million ideas for potential inventions for each cohort

of applications.
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