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Abstract

We analyze multivariate ordered discrete response models with a lattice structure, mod-

eling decision makers who narrowly bracket choices across multiple dimensions. These mod-

els map latent continuous processes into discrete responses using functionally independent

decision thresholds. In a semiparametric framework, we model latent processes as sums

of covariate indices and unobserved errors and derive conditions for identifying index pa-

rameters, thresholds, and the joint cumulative distribution function of the errors. For the

parametric bivariate probit case, we separately derive identification of regression param-

eters and thresholds, and the correlation parameter, with the latter requiring additional

covariate restrictions. We outline estimation approaches for semiparametric and parametric

models, present simulations illustrating the performance of estimators for lattice models,

and provide an application on the relationship between health and happiness rankings.

Keywords: Ordered response, lattice structure, semiparametric models, parametric

identification, narrow bracketing
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1 Introduction

Ordered response models are fundamental in empirical economics, used to analyze discrete

choices with inherent ordering such as risk aversion (Malmendier and Nagel, 2011), political

∗Faculty of Economics, University of Cambridge. Email: tk670@cam.ac.uk
†Department of Economics, Royal Holloway University of London. Email: william.matcham@rhul.ac.uk

1



violence (Besley and Persson, 2011), or educational attainment (Cameron and Heckman, 1998).

These models map latent continuous variables to discrete outcomes via thresholds. While uni-

variate models are well-established (e.g., Cunha et al. (2007), among many others), multivariate

extensions, which allow researchers to capture joint decisions across multiple dimensions, have

received less attention.

We focus on a particular class of multivariate ordered response models with a lattice structure,

where decision makers narrowly bracket their choices, treating dimensions in isolation, in line

with the behavioral economics framework of narrow bracketing (Read et al., 1999). The lattice

structure is characterized by functionally independent decision thresholds across dimensions,

producing a grid-like latent space – hence our terminology “lattice models.”1 In practice, lattice

models (often coupled with some parametric assumptions on the distribution of unobservables)

have served as the default and most straightforward extension of univariate ordered response

models in applied work. Komarova and Matcham (2025) explicitly adopts the term lattice models

to distinguish these restricted structures from more general multivariate formulations.

In this paper, we develop a formal and rigorous semiparametric framework for lattice ordered

response models, where latent processes are specified as linear combinations of covariates and

unobserved errors. We derive identification conditions for regression parameters, thresholds, and

the joint distribution of the unobservables. The literature on univariate ordered models pro-

vides several foundational insights that aid some identification results in multivariate settings

as narrow bracketing allows us to isolate decision-making across different dimensions. Namely,

under full independence between unobservables and covariates, identification of index parame-

ters and thresholds can rely on single-index methodologies just like in the univariate case. More

general semiparametric approaches have allowed weaker conditions: Lee (1992) studied median

independence following the Manski (1975, 1985, 1988) papers on maximum score, while Lewbel

(2000) and Chen and Khan (2003) allowed heteroskedastic unobservables with the latter focusing

on multiplicative heteroskedasticity. In our analysis, we maintain full stochastic independence

between unobservables and covariates to primarily focus on the identification and estimation

of the joint cumulative distribution function (c.d.f.), which is a topic largely unexplored in the

literature, even for lattice models.

Identification of the joint c.d.f. of unobservables in semiparametric models is a core theoretical

contribution of this paper. Understanding this joint distribution is crucial for policy analysis.

In lattice models, complementarity and substitutability in decision structures are not directly

modeled. Thus, all dependence in observed decisions (conditional on covariates) is captured by

1This terminology is our own and is not standard in the literature.
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the dependence among unobservables. This dependence structure is central to policy design

involving joint outcomes such as household decisions on healthcare and education investments,

where the correlation between latent factors determines whether bundled interventions reinforce

or crowd out each other. Semiparametric identification avoids restrictive parametric assumptions

(e.g., joint normality) that can distort estimated policy effects if mis-specified (Malmendier and

Nagel, 2011).

From an estimation perspective, we outline how existing semiparametric estimation methods can

recover index parameters and thresholds in a sample, and we discuss how one could estimate

the joint c.d.f. after those parameters are estimated at the
√
n-rate. We also describe how the

approach of Coppejans (2007) can be extended to jointly estimate all unknown components in

one step.

For the parametric case, we focus on the multivariate normal specification, which conveniently

captures varying degrees of dependence.2 Because the lattice structure allows identification re-

sults for thresholds and indices to extend from univariate models, our attention centers on iden-

tifying the correlation parameters. We provide several sufficient conditions for identification in

the bivariate case, including (i) configurations where one latent index is pinned at zero, (ii) vari-

ation in sign of index–threshold differences across subgroups, and (iii) the presence of exclusive

covariates that shift one margin but not the other.

In short, this paper provides a rigorous foundation for lattice ordered response models, estab-

lishing semiparametric identification and outlining estimation strategies that make these models

suitable for empirical applications where narrow bracketing is plausible, such as consumer pref-

erence formation (Train, 2009) and policy evaluation (Heckman and Vytlacil, 2007).

The remainder of the paper is structured as follows. After a short review of the related literature,

Section 2 introduces the general multivariate lattice model. Section 3 develops the semiparametric

specification, identification results and also discusses various approaches to estimation includiing

those that utilize existing estimation techniques for univariate models, Section 4 details the para-

metric model focusing on multivariate normal errors and identification of correlation coefficients.

Section 5 presents simulation evidence, and Section 6 provides an empirical application estimat-

ing a joint ordered response model for health and happiness rankings. Section 7 concludes. The

Appendix collects proofs of the main theoretical results.

Related Ordered Response Model Literature:

2Alternative parametric specifications for the joint c.d.f. in bivariate ordered response models include Forcina
and Dardanoni (2008) and Ferdous et al. (2010).
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Univariate ordered response models, such as ordered probit and logit, were formalized by McK-

elvey and Zavoina (1975) and Anderson and Philips (1981). Multivariate extensions, introduced

by Ashford and Sowden (1970) for bivariate probit models, account for correlated decisions.

The psychometrics and structural-equation literature adopted and extended the latent-variable

viewpoint to multiple categorical indicators. In particular, Muthén (1984) formalized a structural

equation framework that allowed dichotomous and ordered categorical indicators to be treated as

manifestations of underlying (multivariate normal) latent variables – effectively a multivariate

ordered model within the structural equation modeling (SEM) tradition. SEM/psychometrics

work (e.g., Olsson (1979), among others) set out approaches for polychoric/probit models for

multiple ordinal indicators. Kim (1995) explicitly proposed and implemented a bivariate cumu-

lative probit regression model for ordered categorical margins, with application and numerical

estimation details. For detailed coverage of various types of univariate ordered response model

we refer the reader to Agresti (1990), Boes and Winkelmann (2006), Stewart (2005), and Greene

and Hensher (2010). Greene and Hensher (2010) includes a review of recent applications of the

bivariate ordered probit model. Applications of trivariate ordered probit models include Buliung

and Kanaroglou (2007); Genius, Pantzios, and Tzouvelekas (2006) and Scott and Kanaroglou

(2002).

2 Model formulation

We model a single agent’s decisions across D ≥ 2 dimensions, mapping a D-variate latent

continuous metric (Y ∗c1 , . . . , Y ∗cD) to a discrete metric (Y c1 , . . . , Y cD). Discrete responses in

dimension d are y
(d)
j , j = 1, . . . ,Md, with ordering y

(d)
1 < . . . < y

(d)
Md

.

Definition 1 (Lattice Model). A multivariate ordered discrete response model is a lattice model

if

(Y c1 , . . . , Y cD) =
(
y
(1)
j1
, . . . , y

(D)
jD

)
⇐⇒ Y ∗cd ∈ I(d)

jd
≡

(
α
(d)
jd−1, α

(d)
jd

]
∀d = 1, . . . , D,

with threshold normalizations

∀d = 1, . . . , D, α
(d)
jd

= +∞ when jd = Md, α
(d)
jd

= −∞ when jd = 0.

Thresholds α
(d)
jd

depend only on jd, ensuring functionally independent decision rules across di-

mensions. The intersections of these thresholds across different dimensions form a lattice in RD

(see Figure 1 for a couple of examples). This reflects narrow bracketing (Read et al., 1999), with

intervals I(d)
jd

partitioning R and rectangles ×D
d=1I

(d)
jd

partitioning the latent space.
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3 Semiparametric specification

The dth latent process is

Y ∗cd = xdβd + εd, d = 1, . . . , D,

where xd is a row vector of covariates, βd a column vector of parameters, and εd an error

term. Errors in (ε1, . . . , εD) may be correlated, allowing latent processes Y ∗cd to be correlated

conditional on observables.

Let x = (x1, . . . , xD) and ε = (ε1, . . . , εD)
′ combine full vectors of covariates and unobservables,

respectively. Denote the joint c.d.f. of ε as F and the marginal c.d.f. of εd as Fd, d = 1, . . . , D.

The length of vector xd is kd, d = 1, . . . , D. Let Xd denote the support of xd and for each d,

define

S(d;j) = {xd ∈ Xd | P (Y (d) ≤ y
(d)
j |xd) ∈ (0, 1)}, j = 1, . . . ,Md,

and S(d) = ∪Md
j=1S

(d;j). Let xd,m denote the mth component of xd and xd,−m denote the subvector

of xd excluding the mth component, with similar notations for β. S
(d)
m denotes the projection of

S(d) on xd,m with S
(d)
−m being the projection of S(d) on xd,−m.

3.1 Identification

We derive identification conditions for βd, thresholds α
(d)
jd

and the joint c.d.f. of unobservables

under certain assumptions. We start with Assumption 1.

Assumption 1. For all d = 1, . . . , D, εd is independent of xd and has a convex support.

In univariate ordered response models, the assumption of independence between the unobservable

and covariates is common, being used in Klein and Sherman (2002), Coppejans (2007), among

others.3 We formulate an analogue of a rank condition in the form of Assumption 2.

Assumption 2. S(d) is not contained in any proper linear subspace of Rkd and P
(
S(d)

)
> 0,

for any d = 1, . . . , D.

Theorem 1 (Identification of index parameters: Semiparametric). Suppose Assumptions 1 and

2 hold and for each d = 1, . . . , D, for some j = 1, . . . ,Md − 1 the set S(d;j) contains S̃(d;j) =

3Some papers (see e.g. Chen and Khan (2003)) on univariate ordered response allow for heteroskedasticity. In
our framework, this would correspond to σd(xd, θ0)εd with independent εd. Some other papers further deviate from
the setting of independence. Lee (1992) considers ordered response under the median independence assumption
from Manski (1975, 1985). In a recent paper, Wang and Chen (2022) take a partial identification approach and
consider a generalized maximum score estimator when regressors are interval measured. All of these settings are
beyond the scope of this paper and provide avenues for extensions of our work.
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(xd,1, xd,1) × S̃
(d;j)
−1 where xd,1 < xd,1 and S̃

(d;j)
−1 is not contained in any proper linear subspace of

RKd−1 and P (S̃
(d;j)
−1 ) > 0. In addition, suppose βd,1 ̸= 0. Then, βd are identified up to scale.4

Identification of threshold differences or gaps requires additional conditions to those assumed in

Theorem 1. This is given in Theorem 2.

Theorem 2 (Identification of threshold differences: Semiparametric). Suppose for a given d, the

conditions of Theorem 1 hold for any j = 1, . . . ,Md − 1. Also, for any j = 1, . . . ,Md − 2, there

is a positive measure of xd ∈ S(d;j) such that

P
(
Y cd ≤ y

(d)
j |xd

)
= P

(
Y cd ≤ y

(d)
j+1 | x̃d

)
for some x̃d ∈ S(d;j+1). Then α

(d)
j+1 − α

(d)
j is identified, j = 1, . . . ,Md − 2.

The new condition of Theorem 2 would be guaranteed if for sets S(d;j) and

S(d;j+1) the intersection of the sets of probabilities
{
P
(
Y cd ≤ y

(d)
j |xd

)
: xd ∈ S(d;j)

}
and{

P
(
Y cd ≤ y

(d)
j+1 |xd

)
: xd ∈ S(d;j+1)

}
contains an interval (p

j
, pj). Large support covariate con-

ditions would, for example, ensure that this interval is (0, 1).

Figure 1, which shows a bivariate lattice model, presents an intuitive summary of the identifi-

cation strategy in the models with lattice structures. We consider each dimension individually

and, within that dimension, express probabilities of discrete values up to certain points in terms

of the marginal c.d.f. of the unobservable in that dimension and the index in that dimension.

Theorem 1 is based on considering just one shaded area for many different xd – either the one

the left panel or the one on the right panel in Figure 1. Theorem 2 requires the computation of

both shaded regions for many different xd.

The result of Theorem 2 immediately implies conditions for identification of marginal distribu-

tions of εd, d = 1, . . . , D.

Theorem 3 (Identification of marginal c.d.fs: Semiparametric). Suppose conditions of Theorem

2 hold for some d. Suppose that

⋃
j=1,...,Md−1

⋃
xd∈S(d;j)

P
(
Y (d) ≤ y

(d)
j |xd

)
= (0, 1). (1)

4For notational simplicity, we suppose that it is the first covariate that varies within an interval and has a
non-trivial impact within dimension d. This is without a loss of generality, and generally, it can be some other
covariate xd,m(d) with such properties.

6



Figure 1: Intuition for lattice model identification

α
(1)
1 α

(1)
2

α
(2)
1

α
(2)
2

α
(1)
1 α

(1)
2

α
(2)
1

α
(2)
2

Notes: Left region in the latent space corresponds to P
(
Y (1) ≤ y

(1)
1 |x1

)
. Right region corresponds

to P
(
Y (1) ≤ y

(1)
2 |x1

)
.

Then Fd(·) is identified if (i) either one of the thresholds among α
(d)
j , j = 1, . . . ,Md − 1, is

normalized to a known value, or (ii) if there is a normalization of one of the values of c.d.f. Fd,

say Fd(e0d) = c0d, for some known e0d in the support of εd and some known c0d ∈ (0, 1).

The condition in Equation (1) ensures that any point in the support of εd corresponds to the

underlying α
(d)
j − xdβd for some j and xd. Condition (i) explicitly normalizes one threshold

(the identification of values of the other thresholds then immediately follows from Theorem 2),

whereas condition (ii) enforces a normalization of one threshold in an indirect way.

The result of Theorem 3 does not guarantee identification of the joint distribution of unobserv-

ables, even if the conditions of this corollary hold for every d = 1, . . . , D. The reason is two-fold.

First, Assumption 1 does not give any information about how the vector ε relates to xh, h ̸= d.

Under a full stochastic independence of the vector ε from the whole vector x, the identification

process is easier as P (ε1 ≤ e1, . . . , εD ≤ eD|x) does not depend on x and we only need to identify

one D-variate c.d.f. F (e1, . . . , eD) = P (ε1 ≤ e1, . . . , εD ≤ eD). The main channel through which

we can proceed with the identification of F is by considering observed probabilities

P
(
Y (1) ≤ y

(1)
j1
, . . . , Y (D) ≤ y

(D)
jD

|x
)
= F (α

(1)
j1

− x1β1, . . . , α
(D)
jD

− xDβD)

but then the question becomes of whether the data provides enough joint variation in indices

(x1β1, . . . , xDβD) to identify F on the whole support E of ε. The issue is that some (potentially

each) xd could share all its covariates with another process. In this case (α
(1)
j1

− x1β1, . . . , α
(D)
jD

−
xDβD)

′ could take values only in a proper subset of E and could vary only in certain directions as

we vary the values of covariates. Since at this identification stage, (α
(1)
j1

−x1β1, . . . , α
(D)
jD

−xDβD)
′
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Figure 2: Illustration of the identification of joint c.d.f. of ε

ε1

ε2

ε1 ε11 ε12 ε1

E

is observed, one could try and assess whether this vector covers the whole support E . We present

conditions under which this is guaranteed. The illustration of our idea is given in Figure 2

for D = 2. In one dimension (e.g. for ε1) we ensure that α
(1)
j1

− x1β1 can cover the whole

marginal support of ε1 (can be checked using conditions of Theorem 3). In the other dimension

(e.g. for ε2) we can require an exclusive covariate with non-zero coefficient – without a loss of

generality x2,1 – that can provide enough own variation in α
(2)
j2

− x2β2 while keeping x1β1 fixed.

In Figure 2, this variation is shown using vertical arrows. Once x1β1 is fixed, this variation can

be checked to cover both lower and upper boundaries of E (either finite or infinite) by checking

whether supj2 supx2,1
F (α

(1)
j1

− x1β1, α
(2)
j2

− x2β2) coincides with F (α
(1)
j1

− x1β1) (upper boundary)

and whether infj2 infx2,1 F (α
(1)
j1

− x1β1, α
(2)
j2

− x2β2) is 0 (lower boundary). For general D, this

identification strategy can be translated into the requirements on exclusive covariates in D − 1

processes.

Theorem 4 (Identification of joint c.d.f: Semiparametric). Suppose all conditions of Theorem

3 hold for each d = 1, . . . , D and, hence, all the index parameters (subject to normalizations),

thresholds, marginal c.d.f.s are identified.

In addition, suppose that

(a) ε is independent of x;

(b) at least D − 1 processes – without loss of generality processes 2 to D – have xd,1, d =

2, . . . , D, as an exclusive covariate with support large enough5 to ensure that for some

5It does not have to be infinite – it depends on the support of the underlying ε.
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(j1, j2, . . . , jD), for each m = 2, . . . , D,

inf
xm,1|(xk)

m−1
k=1 ,xm,−1

P
(
∩m

k=1(Y
(k) ≤ y

(k)
jk

) | (xk)
m−1
k=1 , xm

)
= 0 (2)

sup
xm,1|(xk)

m−1
k=1 ,xm,−1

P
(
∩m

k=1(Y
(k) ≤ y

(k)
jk

) | (xk)
m−1
k=1 , xm

)
= P

(
∩m−1

k=1 (Y
(k) ≤ y

(k)
jk

) | (xk)
m−1
k=1

)
(3)

for any (xk)
m−1
k=1 such that P

(
∩m−1

k=1 (Y
(k) ≤ y

(k)
jk

) | (xk)
m−1
k=1

)
∈ (0, 1).

Then the joint c.d.f. of unobservables is identified.

Conditions (2) and (3) guarantee that (α
(1)
j1

− x1β1, . . . , α
(D)
jD

− xDβD)
′ for some j1, . . . , jD when

taken in any direction λ in RD, can reach the boundary of E in both positive and negative

directions of λ.

To illustrate the progressive restrictiveness of the identification conditions outlined in Theorems

1 through 4, we construct four nested data-generating processes (DGPs) for a bivariate (D = 2)

lattice model, each building sequentially on its predecessor. Each latent process contains a two-

dimensional covariate vector associated with β1 = β2 = (1, 0.5)′. In each dimension, there are

three ordered responses, and the threshold differences are 2. Suppose the vector of unobservables

is independent of covariates and has a joint normal distribution.

In DGP 1, covariates are defined as x1 = x2 = (xcommon1, xcommon2), where xcommon1, xcommon2 ∼
Uniform[−0.5, 0.5] and xcommon1, xcommon2 are not perfectly linearly related. This DGP provides

limited support for x1β1 and x2β2 (it is within [−0.75, 0.75]). Theorem 1 is satisfied, which

ensures identification of β1, β2 up to scale, but fails to meet the conditions of Theorem 2 as

it lacks overlaps in choice probabilities for threshold differences, Indeed, P (Y cd ≤ y
(d)
1 |xd) ∈

[α
(d)
1 − 0.75, α

(d)
1 + 0.75] whereas

P (Y cd ≤ y
(d)
2 |xd) ∈ [2 + α

(d)
1 − 0.75, 2 + α

(d)
1 + 0.75] = [α

(d)
1 + 1.25, α

(d)
1 + 2.75]

with [α
(d)
1 − 0.75, α

(d)
1 +0.75] and [α

(d)
1 +1.25, α

(d)
1 +2.75] obviously not overlapping. The narrow

range of the indices precludes the probability matching required by Theorem 2.

DGP 2 extends the first by widening the support of covariates: xcommon1 ∼ Uniform[−2, 2],

xcommon2 ∼ Uniform[−0.5, 0.5] enabling overlaps in conditional probabilities (e.g., P (Y cd ≤
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y
(d)
1 |xd) ∈ [α

(d)
1 − 2.25, α

(d)
1 +2.25] and P (Y cd ≤ y

(d)
2 |xd) ∈ [α

(d)
1 − 0.25, α

(d)
1 +4.25]). This satisfies

the conditions up to Theorem 2 but falls short of Theorem 3, as the support, while sufficient for

probability matching, does not fully cover the interval (0, 1). The added restrictiveness stems

from the need for broader support to align probabilities, yet the coverage remains incomplete.

DGP 3 further extends the second by setting xcommon1 ∼ Laplace (full support), xcommon2 ∼
Uniform[−0.5, 0.5] to ensure full probability coverage over (0, 1), and incorporates a normaliza-

tion Fd(0) = 0.5. This setup satisfies the conditions up to Theorem 3 but fails Theorem 4. as

the absence of exclusive covariates prevents independent shifting of dimensions to capture joint

dependence.

DGP 4 builds on the third by defining xexcl1 ∼ Laplace, xexcl2 ∼ Laplace, xcommon2 ∼
Uniform[−0.5, 0.5] (the support of the distribution of (xexcl1, xexcl2, xcommon2) has an interior

in R3, This allows independent shifting of dimensions 1 and 2, satisfying the requirement of

Theorem 4 (note this theorem only requires independent shifting of one dimension, but for sim-

plicity we allow that in both dimensions). All the parameters including the joint c.d.f. can then

be identified fully.

3.2 Estimation

In what follows, we briefly outline some possibilities for estimating parameters in semiparametric

models. A theme of this section is to describe existing univariate ordered response estimation

methods that generalize to lattice models.

Two-step approach The idea of this method is to (i) use existing estimation approaches for

semiparametric univariate ordered response models to estimate index and threshold parameters

at a suitable rate (albeit suboptimally as the dependence of the latent processes is ignored), and

(ii) construct estimates of the joint c.d.f. using well-known statistical methods.

We start by discussing which estimation approaches in the literature can be utilized in the first

step.

Lewbel (2000) develops a semiparametric estimator for qualitative response models (binary,

ordered, multinomial), allowing for unknown heteroskedasticity in the latent errors with respect

to regressors, or instrumental variables for endogeneity. The method relies on a “special regressor”

v that is conditionally independent of the error ε given other regressors x (i.e., Fε|v,x(ε | v, x) =
Fε|x(ε | x)), with large support. The estimator resembles OLS or 2SLS on a transformed response

10



y∗ = [y − I(v < 0)]/f(v | x), where f is the conditional density of v given x, yielding for

ordered response models
√
n-consistent and asymptotically normal estimates for coefficients β

and thresholds (for ordered models).

To generalize Lewbel (2000) to lattice models, we need to have xd = (vd, wd) with a continuous

special regressor vd with large support per dimension d – this would effectively extend our As-

sumption 2 (and accommodating heteroskedasticty by allowing Var(εd | xd) to be arbitrary). The

estimator would proceed marginally per dimension using the Lewbel (2000) ordered method to

recover βd and thresholds α
(d)
j . Lewbel (2000) considers a univariate ordered response, hence the

question of joint c.d.f. does not arise (note, however, that for multinomial choice the estimation

of joint c.d.f. of unobservables is relevant but Lewbel (2000) does not address it).

The Klein and Sherman (2002) approach analyzes the univariate model and estimates the index

parameter in the first stage using kernel density estimates of the conditional probability of

choosing below a certain level. In the second stage, the approach estimates threshold parameters

using shift restrictions. We can extend this approach to multivariate lattice models because

the functional independence of thresholds across dimensions allows us to apply stages 1 and

2 marginally for each d = 1, . . . , D, using univariate techniques and our Assumption 1 which

mirrors the assumption of independence in Klein and Sherman (2002) and leads to P (Y d
c ≤

y
(d)
j |xd) = Fd(α

(d)
j −xdβd). The estimators of index and threshold parameters obtained from this

stage are
√
n-consistent and asymptotically normal.

Chen and Khan (2003) derives rates of convergence for estimating index parameters in het-

eroskedastic discrete response models, assuming multiplicative heteroskedasticity εi = σ(xi) · ui,

where ui is homoskedastic and independent of xi. For ordered response models with at least three

categories,
√
n-consistent estimators are possible. To generalize Chen and Khan (2003) to lattice

models, we can consider each dimension d separately and consider at least three responses in

that dimension. At the same time, we can generalize it to multiplicative heteroskedasticity per

dimension: εd = σd(xd) · ud, where ud is homoskedastic and independent of xd. The Chen and

Khan (2003) estimator for index parameters and thresholds proceeds marginally per dimension.

Marginal stages inherit rates from Chen and Khan (2003):
√
n-consistent β̂d and α̂

(d)
j for Md ≥ 3.

Liu and Yu (2024) proposes two simple semiparametric estimators for univariate ordered response

models with an unknown error distribution F0, achieving
√
n-consistent and asymptotically nor-

mal estimators of the index parameters and thresholds. The first method (binary choice-based)

constructs nonparametric maximum likelihood estimates (NPMLE) of F0 from recast binary

data, then uses moment conditions for index and threshold parameters. The second method

(full ordered data) extends this by incorporating all outcomes via a weighted NPMLE. Both

11



enforce monotonicity of F0 and use bootstrap for inference. In lattice models, one can apply

Liu and Yu (2024) methods marginally per dimension to estimate βd and thresholds α
(d)
j (up to

scale/location). All these estimators will be
√
n-consistent and asymptotically normal.

Thus, all these approaches are suitable when one’s goal is to estimate index and thresholds

parameters. Given these estimates, one can now proceed with the estimation of the joint c.d.f.

F in the second stage (this, of course, is not addressed in the papers mentioned above due to

the univariate nature of the problem there). Now we discuss some specific approaches that can

be used to obtain F̂ .

One possible approach is the grid inversion method that discretizes the error space and

solves a constrained optimization problem. It is a direct, computationally intensive non-

parametric method. We outline it for D = 2. Its idea is based on the fact that given

xi = (xi1, xi2) and (Y
(c1)
j1

= y
(1)
j1
, Y

(c2)
j2

= y
(2)
j2
), the latent pair (ε1i, ε2i) lies in the rectangle

Ri = ×2
d=1

(
α
(d)
jd−1 − xidβd, α

(d)
jd

− xidβd

]
and, hence, due to independence of errors from covari-

ates,

P (Y (c1) = y
(1)
j1
, Y (c2) = y

(2)
j2

| X = x) =
1∑

ℓ1=0

1∑
ℓ2=0

(−1)ℓ1+ℓ2F (α
(1)
j1−ℓ1

− xi1β1, α
(2)
j2−ℓ2

− xi2β2). (4)

In the sample each observation i implies a rectangular interval R̂i = ε̂i ∈
×2

d=1

(
α̂
(d)
jd(i)−1 − xdiβ̂d, α̂

(d)
jd(i)

− xdiβ̂d

]
for the residual ε̂i, where jd(i) is the observed category

in dimension d for i (with −∞,+∞ boundaries). Let G = {(e1,k, e2,ℓ) : k = 1, . . . , K1, ℓ =

1, . . . , K2} be the set of unique lower/upper bounds from all such implied sample rectangles. Let

ϕ =
(
F (e1,k, e2,ℓ)

)
k,ℓ

∈ RK1K2 collect the unknown c.d.f. values on this grid. We want to find

the probability mass assigned to each grid point such that the implied probabilities for each cell

match the empirical probabilities in the data as closely as possible. To do this, for each distinct

covariate pattern xg (group), define the empirical cell probabilities

π̂j1j2(xg) ≡ P̂ (Y
(c1)
i = y

(1)
j1(i)

, Y
(c2)
i = y

(2)
j2(i)

| X = xi) =

∑
i:xi=xg

1{Y (1)
i = y

(1)
j1
, Y

(2)
i = y

(2)
j2
}∑

i : 1(xi = xg)
.

Then for each (j1, j2, g),

π̂j1j2(xg) =
∑
k,ℓ

Aj1j2,g(k, ℓ)ϕkℓ + uj1j2,g,

where Aj1j2,g(k, ℓ) ∈ {−1, 0, 1} encodes which c.d.f. corner terms enter each rectangle probability
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using (4). Stacking over all (j1, j2, g) yields Aϕ = π̂ + u, where π̂ collects all empirical cell

probabilities. We can estimate ϕ as ϕ̂ = argminϕ∈Φ ∥Aϕ− π̂∥2, where the feasible set Φ enforces

the defining properties of a c.d.f.:

Φ = {ϕ : 0 ≤ ϕkℓ ≤ 1, ϕkℓ nondecreasing in k and in ℓ} .

Optionally we can include a smoothness penalty and optimize minϕ∈Φ ∥Aϕ − π̂∥2 + λ∥Dϕ∥2,
where D is a finite-difference matrix. The estimator provides

F̂ (e1,k, e2,ℓ) = ϕ̂kℓ,

which can be extended to a continuous surface by bilinear interpolation. There are some vari-

ations of this method. E.g., instead of the grid determined by the implied rectangular regions,

one can consider a completely exogenous sample-free grid.

Another option is the kernel smoothing approach. Just like the inversion grid method it uses

the fact that εi ∈ Ri given xi = (xi1, xi2) and (Y
(c1)
j1

= y
(1)
j1
, Y

(c2)
j2

= y
(2)
j2
), and with Ri defined in

the same way as in the grid inversion method. In the sample each observation i implies ε̂i ∈ R̂i.

We can implement a simulated kernel density estimator, where for each observation i we draw

S random samples (ε̃
(s)
1 , ε̃

(s)
2 ) uniformly from its rectangle R̂i. We then pool all these N × S

simulated points together. We then perform a standard bivariate kernel density estimation on

this large pooled sample. The resulting density is an estimate of f(ε1, ε2). We can then integrate

this estimated density numerically to get the estimated c.d.f.

Other possible approaches include nonparametric sieve estimator subject to suitable choice of

base (for monotonicity-preserving properties) and nonparametric maximum likelihood estimator.

We have implemented the grid inversion and the simulated kernel density estimator in simulations

but not the other approaches.

One-step approach If one is interested in estimating the joint c.d.f of unobservable ε (for

purposes of analysing policy intervention or other counterfactuals), then one could extend Coppe-

jans (2007) originally developed for univariate ordered response models under independence of

the error and covariates. In what follows, we extend it to multivariate ordered response mod-

els, describing the bivariate case for illustrational simplicity. Suppose we have a random sample

13



{
(y(1)(i), y(2)(i), x

(i)
1 , x

(i)
2 )

}N

i=1
. The idea is to maximize the log-likelihood function

L(θ) = 1

N

N∑
i=1

M1∑
j1=1

M2∑
j2=1

1
[
(y(1)(i), y(2)(i)) = (y

(1)
j1
, y

(2)
j2
)
]
log(ℓ

(i)
j1,j2

), where (5)

ℓ
(i)
j1,j2

= F
(
a
(1)
j1

− x
(i)
1 b1, a

(2)
j2

− x
(i)
2 b2

)
− F

(
a
(1)
j1−1 − x

(i)
1 b1, a

(2)
j2

− x
(i)
2 b2

)
− F

(
a
(1)
j1

− x
(i)
1 b1, a

(2)
j2−1 − x

(i)
2 b2

)
+ F

(
a
(1)
j1−1 − x

(i)
1 b1, a

(2)
j2−1 − x

(i)
2 b2

)
, (6)

for joint c.d.f. of unobservables F . Coppejans (2007) uses a quadratic B-spline to estimate the

c.d.f of unobservables. The multivariate analogy is tensor-product B-splines. For instance, in the

bivariate case the tensor-product basis consists of S1 ·S2 products of polynomials R in the form

R1;s1,S1(e1; q1)R2;s2,S2(e2; q2), s1 = 1, . . . , S1, s2 = 1, . . . , S2,

here calculated for specific values of e1 and e2, with qd denoting the degree of B-spline in di-

mension d = 1, 2. A general tensor-product B-spline, which approximates F (e1, e2), is a linear

combination of these base tensor-product polynomials with coefficients {hs1s2}, sd = 1, . . . , Sd,

d = 1, 2:
S1∑

s1=1

S2∑
s2=1

hs1s2R1;s1,S1(e1; q1)R2;s2,S2(e2; q2).

The linear constraints

hs1s2 ≤ hs1+1,s2 , ∀ s1 = 1, . . . , S1 − 1, s2 = 1, . . . , S2

hs1s2 ≤ hs1,s2+1, ∀ s2 = 1, . . . , S2 − 1, s1 = 1, . . . , S1

guarantee monotonicity of the tensor-product B-spline in each dimension. Additionally, the linear

constraints

0 ≤ hs1,s2 ≤ 1, ∀ s1, s2

guarantee natural c.d.f. bounds of 0 and 1.6 Linear equality constraints on hs1s2 can impose

normalization restrictions on Fd.

6For more details on shape constraints in tensor-product B-splines, see Bhattacharya and Komarova (2022).
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4 Parametric specification

In practice, a researcher may choose a parametric family to model the distribution of unobserv-

ables conditional on covariates. On the one hand, choosing a parametric family allows researcher

to explicitly model the distribution of observables as that depending on x and be able to identify

all the primitives given the assumed (potentially complicated) dependence structure. The exact

identification strategy and assumption behind it will depend on the assumed structure. On the

other hand, a researcher may still opt for independent errors and covariates and rely on less

stringent data requirements for identification than those given in Section 3 as well as a simpler

estimation approach.

We illustrate the latter case focusing on the lattice ordered probit (Gaussian errors) case.

Assumption 3 (Joint normal errors). The vector ε is independent of x and follows N(0,Σ)

where Σ has ones on the diagonal and correlation ρkl for as an off-diagonal (k, l)-element.7

4.1 Identification

As expected, due to our ability to view decisions rules across different dimensions, index and

threshold parameters can be identified using the same rank condition commonly employed in

univariate ordered probit models. This is formally presented in Theorem 5 below. Its proof is

well known and we replicate it in the Appendix purely for completeness.

Theorem 5 (Identification of index parameters and thresholds: Parametric). Suppose Assump-

tion 3 holds. If for a fixed dimension d there exist kd + 1 points {x(i)
d }kd+1

i=1 ⊂ Xd such that the

matrix 
1 x

(1)
d

1 x
(2)
d

...
...

1 x
(kd+1)
d


has rank kd + 1, then βd and the thresholds {α(d)

j }Md−1
j=1 are identified.

Identification of correlation coefficients ρd1,d2 in the multivariate lattice setting does not follow

from any readily available results in the literature. We carry out this identification in the pairwise

7Note we have already normalized the means and variances of εd, d = 1, . . . , D, as it is easy to show that
otherwise that the best hope is identification up to a scale and a shift. Theses are also usual scale/location
normalizations used for example in multinomial probit.)
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manner under supplementary variation/exclusion conditions. They are collected in Theorem 6

below.

Theorem 6 (Identification of pairwise correlations: Parametric). Suppose Assumption 3 holds

and Theorem 5’s conditions hold for dimensions d1 and d2. Then the correlation ρd1,d2 is identified

if at least one of the following holds:

(a) there exists x∗
d1

such that for some j = 1, . . . ,Md−1 it holds that P (Y c1 ≤ y
(d1)
j1

|x∗
d1
) = 0.5;

(b) There are points x, x̃, x⋄ ∈ X such that for some j1 = 1, . . . ,Md1 − 1, j2 = 1, . . . ,Md2 − 1,

(P (Y c2 ≤ y
(d2)
j2

|xd2)− 0.5)(P (Y c2 ≤ y
(d2)
j2

|x̃d2)− 0.5) > 0,

(P (Y c2 ≤ y
(d2)
j2

|xd2)− 0.5)(P (Y c2 ≤ y
(d2)
j2

|x⋄
d2
)− 0.5) > 0,

(P (Y c1 ≤ y
(d1)
j1

|xd1)− 0.5)(P (Y c1 ≤ y
(d1)
j1

|x̃d1)− 0.5) < 0;

(c) there exists a subvector in xd1 – without a loss of generality suppose it is xd1,1:Ld1
, Ld1 ≥ 1,

– such that at least of the parameters in βd1,1:Ld1
is not zero and and xd1,1:Ld1

is excluded

from xd2 – that is,

xd1,ℓ |xd2 has a non-degenerate distribution, l = 1, . . . , Ld1 .

Let Xd1d2 denote the projection of X onto the (kd1+kd2)-dimensional space of covarites in di-

mensions d1 and d2 and suppose there are two different points in Xd1d2that differ only in the

value of covariates in the subvector xd1,1:Ld1
– denote them as (x

(h)
d1,1:Ld1

, xd1,Ld1
+1:kd1

, xd2),

h = 1, 2, – such that for some indices j1 ≤ Md1 − 1, j2 ≤ Md2 − 1,

P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) ≤ y
(d2)
j2

|x(1)
d1,1:Ld1

, xd1,Ld1
+1:kd1

, xd2

)
̸=

P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) ≤ y
(d2)
j2

|x(2)
d1,1:Ld1

, xd1,Ld1
+1:kd1

, xd2

)
.

Condition (a) requires a covariate configuration where the latent index in one dimension (d1) is

exactly at some threshold. It creates a “pivot” where the error εd1 is symmetrically distributed

around zero, making joint probabilities with dimension 2 purely a function of ρd1,d2 ’s influence

on εd2 . Condition (b) requires sign-flipping covariates. Namely, it assumes covariate variation

creating “same-sign” indices in one dimension (both above or both below the median threshold)

but “sign-flipping” in the other. There are other ways to formulate related sufficient conditions

in this spirit but we have opted to present this one. Condition (c) is an IV-style exclusion: a

covariate (or subvector) affects dimension d1’s outcome (via assocated nonzero βd1 ’s) but not
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dimension d2’s directly (exclusion from xd2). By having a variable that affects only one outcome,

we can trace out how joint probabilities shift when one margin’s latent index moves while the

other stays fixed. This variation rotates the joint probability surface (enough to do it once),

letting us solve for ρd1,d2 .

4.2 Estimation in the parametric model

Estimation in the parametric model is standard via maximum likelihood. The log-likelihood

function in the bivariate case is equal to that in equations (5) and (6) with a specified cumulative

distribution function F . We use bivariate normal as the natural example of F , as in Assumption

3, so that ε = (ε1, ε2)
′ is jointly normal with mean (0, 0)′, unit variances, and correlation ρ. Given

a random sample
{
(y(1)(i), y(2)(i), x

(i)
1 , x

(i)
2 )

}N

i=1
and collecting β1, β2, ρ and all the thresholds in α

in one parameter vector θ, we construct the log-likelihood function

L(θ) =
1

N

N∑
i=1

M1∑
j1=1

M2∑
j2=1

1
[
(y(1)(i), y(2)(i)) = (y

(1)
j1
, y

(2)
j2
)
]
log(ℓ

(i)
j1,j2

(θ)) =
1

N

N∑
i=1

log(ℓ(i)(θ)),

with ℓ
(i)
j1,j2

=
1∑

t1=0

1∑
t2=0

(−1)t1+t2Φ2

(
α
(1)
j1−t1,j2

− x
(i)
1 β1, α

(2)
j1,j2−t2

− x
(i)
2 β2; ρ

)
,

where Φ2(·, ·; ρ) denotes the standard bivariate normal c.d.f. with correlation parameter ρ.

The maximum likelihood estimator (MLE) θ̂ solves the optimization problem maxθ L(θ).8 Under
the typical MLE regularity conditions (Newey and McFadden, 1994), we have

√
N(θ̂ − θ0)

d−→
N (0, V ), V = E

[
∂ log(ℓ(i)(θ0))

∂θ
∂ log(ℓ(i)(θ0))

∂θ′

]
. The natural plug-in sample-analogue estimator of V

provides a consistent estimator for the variance-covariance matrix.

5 Simulations

We consider a bivariate ordered response model with

Y ∗c1
i = x1iβ1 + ϵ1i, (7)

Y ∗c2
i = x2iβ2 + ϵ2i. (8)

8One can impose inequality constraints on α and ρ and maximize a constrained likelihood, or, more straight-

forwardly, re-parameterize the likelihood to estimate α
(j)
1 ,

√
α
(j)
2 − α

(j)
1 , . . . ,

√
α
(j)
Md

− α
(d)
Md−1 and tanh−1(ρ) so

that constraints are enforced automatically.
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Table 1: Overall performance comparison

Method RMSE KS Distance CvM Distance Correlation
Grid Inversion 0.07232 0.192247 0.005244 0.991955

(0.003677) (0.011666) (0.000534) (0.000509)
Kernel Smoothing 0.026877 0.073202 0.000729 0.996752

(0.002509) (0.007906) (0.000138) (0.000420)

Notes: All metrics are calculated on evaluation grid with 80 × 80 = 6, 400 points and
then averaged across 400 simulations. Parentheses contain standard deviations across
simulations. Lower values indicate better performance for all metrics except correlation.

5.1 Semiparametric model

Here we focus on two-step approaches. We take the index and threshold parameters to be known

(in reality, they would have been estimated consistently at
√
n rate) and just focus on the

estimation of the joint c.d.f. given these parameters. This allows us to compare the performance

of different second-stage approaches in their pure form without first-stage inference.9 We take

both x1i and x2i to be univariate with respective β1 = 0.8, β2 = −0.5. We adopt 3×3 categorical

outcomes with the thresholds determining the decision structure given by α
(1)
0 = −∞, α

(1)
1 = −1,

α
(1)
2 = 1, α

(1)
3 = +∞ for dimension 1 and α

(2)
0 = −∞, α

(2)
1 = −0.8, α

(2)
2 = 0.8, α

(2)
3 = +∞. for

dimension 2. We take x1 ∼ N(0, 1), x2 ∼ 0.5N(0, 1) + 0.3x1, and ε is bivariate normal with

mean zero, unit variances, and the correlation coefficient 0.6. We draw S = 10 points from the

rectangle associated with observation i.

We compare the performance of our estimators on an 80 × 80 evaluation grid over [−2.5, 2.5]2:

We use G = 6, 400 to denote the number of points in the evaluation grid and g to denote a par-

ticular point on this grid. As criteria we use Root Mean Square Error
√

1
G

∑n
g=1(F̂ (g)− F (g))2

(RMSE), Kolmogorov-Smirnov (KS) distance maxg |F̂ (g)−F (g)|, Cramér-von Mises (CvM) dis-

tance 1
G

∑G
g=1(F̂ (g)− F (g))2 and correlation corr(F̂ , F ).

Table 1 presents simulation results comparing both approaches on the average of the four metrics

in 400 simulations. Figure 3 plots the contour curves for the true and estimated c.d.fs for grid

inversion (left-hand side) and kernel smoothing (right-hand).

Based on the results in the table and the figure, the kernel smoothing method outperforms the

grid inversion method across all four metrics. We do not pursue further with regard to how well

these methods do with regard to various regions (central vs tail ones) or which method performs

better with regard to some specific distributional characteristics such as entropy, or tail mass, but

one could of course pursue this type of simulation analysis as well. It may very well be the case

9Moreover, first-stage estimation approaches come from already existing literature.
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Figure 3: Illustration of the joint c.d.f. estimation in step 2 of two-step approaches

(a) Grid inversion method (b) Kernel smoothing method

Notes: The graphs present contour curves for the true and estimated c.d.f.

that the grid inversion method may perform better in other criteria, as it explicitly incorporates

the ordinal response structure through the design matrix A and its associated constrained least

squares formulation provides a globally optimal solution for the discrete approximation.

5.2 Parametric model

We now examine Monte Carlo simulations for the parametric case with normal errors. For the

purposes of the simulations, we rewrite Equations (7) and (8) as

Y ∗c1
i = xiβ1 + w1iγ1 + ε1i, Y ∗c2

i = xiβ2 + w2iγ2 + ε2i

to distinguish exclusive (w) and non-exclusive (x) covariates. We explore a first scenario with no

exclusive covariates (γ1 = γ2 = 0), a second scenario with an exclusive covariate in one latent

process, and a third scenario with exclusive covariates in both latent processes. Each simulation

design uses 400 independent random samples of size 1,000. A summary of the simulation results

is that in all models, which vary in their number of discrete valuesMd, type of regressors (discrete

or continuous) and exclusivity of regressors, all parameters are estimated with essentially no bias;

threshold and index parameters are estimated more precisely than the correlation parameter.
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Figure 4: Latent variable space in Parametric Design 1

(1, 1) (2, 1)

(1, 2) (2, 2)

Y ∗c1

Y ∗c2

1

1.25

Parametric Design 1: 2×2 structure, no excluded regressors

We investigate parametric estimation without exclusive covariates by setting γ1 = γ2 = 0, thus

removing w1 and w2. We set β1 = 3, β2 = 2.5, ρ = 0.33, and use a 2×2 non-lattice structure with

thresholds α
(1)
1 = 1 and α

(2)
1 = 1.25 (see Figure 4). The common regressor x follows a uniform

[−4, 4] distribution.

Table 2 Panel 1 reports mean and standard deviation of parameter estimates. The method

estimates all parameters with minimal bias. Estimates of ρ are less precise due to the absence of

excluded regressors.

Parametric Design 2: 4×3 with one excluded covariate

In the second simulation design, we extend the number of discrete values Md in both dimensions.

The discrete dependent variable Y c1 can take four values and Y c2 can take three values. This

generates a 4×3 structure, illustrated in Figure 5. The common covariate x follows a uniform

[−2, 2] distribution (alternatively we could have taken it to be discrete). The covariate w1 is

a discrete random variable taking values -2.5, -1.5, -0.5 and 0.5 with equal probability. We set

γ2 = 0 thus effectively removing w2 in the second equation. The parameter values are β1 =

2, γ1 = −3, β2 = 3 and ρ = 0.25.

Table 2 Panel 2 lists the across-simulation means and standard deviations of the index parame-

ters, thresholds, and the correlation coefficient. The bivariate ordered probit method estimates all

parameters with essentially no bias. The correlation parameter remains the least precise estimate

across parameters.
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Table 2: Parametric simulation results

Parameter Truth Mean SD

Panel 1:
β1 3 3.08 0.35
β2 2.5 2.53 0.23
ρ 0.33 0.34 0.14

α
(1)
1 1 1.02 0.16

α
(2)
1 1.25 1.26 0.15

Panel 2:
β1 2 2.02 0.10
γ1 -3 -3.03 0.15
β2 3 3.01 0.16
ρ 0.25 0.26 0.09

α
(1)
1 -1.5 -1.51 0.12

α
(1)
2 0.6 0.60 0.10

α
(1)
3 4 4.04 0.21

α
(2)
1 -2.5 -2.50 0.15

α
(2)
1 2 2.02 0.13

Panel 3
β1 1.75 1.75 0.08
γ1 -2.75 -2.76 0.12
β2 2.5 2.65 0.39
γ2 -4 -4.24 0.64
δ2 2 2.11 0.32
ρ 0.5 0.53 0.19

α
(1)
1 -7 -7.04 0.31

α
(1)
2 -5 -5.01 0.21

α
(1)
3 -0.75 -0.75 0.08

α
(1)
4 2.5 2.51 0.13

α
(1)
5 4 4.00 0.18

α
(2)
1 -2 -2.10 0.33

Notes: This table reports the sample mean and sample stan-
dard deviations of the estimates of the parameters, over 400
samples. The panels correspond to the respective designs.
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Figure 5: Latent variable space for two equations: Design 2

−1.5 0.6 4

−2.5

2

Y ∗c1

Y ∗c2

Parametric Design 3: 6×2

We consider a design that creates a 6×2 structure on the latent variable space. Figure 6 illustrates

the threshold structure and the values of thresholds. In this design, the common regressor x is

drawn from uniform [−2, 2] and both latent equations have excluded regressors w1, w2
iid∼ t7. We

also include an additional regressor z2 in equation 2, drawn from a logistic (3,2) distribution.

The parameter corresponding to z2 is denoted δ2, so that the latent equations read

Y ∗c1
i = xiβ1 + w1iγ1 + ε1i

Y ∗c2
i = xiβ2 + w2iγ2 + ε2i + z2iδ2

The parameter values are β1 = 1.75, β2 = 2.5, γ1 = −2.75, γ2 = −4, and δ2 = 2. Table 2 presents

the results for the index parameters, thresholds, and the correlation coefficient. Generally, all

parameters are estimated with low bias, though slightly more bias in the parameters in the

second dimension compared to the first.

6 Application

Now we study the main factors driving self-reported health and happiness as well co-movement

in unobservables driving them. To do this, we pool data on the United States of America and

Canada from six waves of the World Values Survey (Inglehart et al., 2014). The results are also

fully robust to the use of a different dataset: the National Health and Nutrition Examination
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Figure 6: Latent variable space for two equations: Design 3

Y ∗1

Y ∗2

−7 −5 −0.75 2.5 4

−2

Survey (NHANES).

The specification considered follows the standard setup described in the paper. Namely, for latent

physical health (p) and sadness (m) variables Y ∗
p and Y ∗

m respectively, we have

Y ∗
p = xβp + wpγp + εp

Y ∗
m = xβm + wmγm + εm

with common row of covariates x and exclusive covariates wp and wm in those two processes.

The discrete dependent variable for health we use takes three values: 0, 1, and 2. The value

0 represents a self-reported “State of health” as “fair”, “poor”, or “very poor”. The value 1

represents a report of “good”, and the value 2 a report of “very good”. The dependent variable

for happiness again takes values 0, 1, and 2. In this case, a value of 0 represents a self-reported

“Feeling of happiness” as “very happy”. A value of 1 represents a reporting of “quite happy”,

and a value of 2 a reporting of either “not very happy” or “not at all happy”. It is coded so that

higher values reflect lower self-reported happiness.

The common set of regressors x includes the variabless: male, white, a college education dummy,

age, regional dummies, and 5 dummies for income brackets. The 5 income brackets are: (1) less

than $20,00; (2) between $20,000 and $35,000; (3) between $35,000 and $50,000; (4) between

$50,000 and $ 75,000; and (5) greater than $100,000. We include no excluded health regressors, so
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Figure 7: Estimates from Lattice Bivariate Probit: Health and Happiness
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that wp = 0, but include dummies for employment status and living with a partner as excluded

happiness regressors, wm.

The coefficients from the lattice bivariate ordered probit regression are provided in Table 3. The

signs of the regression coefficients are as expected. Positive partial effects on the probability

of better health (above a certain level) are given by variables that include dummies for white

ethnicity and college education, and higher income brackets. The variables that positively affect

the probability of higher happiness (or, equivalently, lower sadness) include living with a partner

and higher income brackets. The effect of employment status on the probability of a higher

happiness appears negative but is not statistically significant.

The estimated value of the correlation between the two model errors is negative, which is consis-

tent with our expectations that shocks that increase health would tend to decrease sadness and

shocks that decrease health would tend to increase sadness. The thresholds produced are shown

in Figure 7.
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Table 3: Estimation Coefficients: Health and Happiness

Dependent Variable: Health
white 0.1874 (0.0435)
male 0.1503 (0.05515

white × male -0.2292 (0.0612)
college degree 0.2019 (0.0297)

employed 0.2096 (0.0267)
age -0.0091 (0.0008)

income 2 0.2803 (.04256)
income 3 0.4164 (.0423)
income 4 0.5904 (.04482)
income 5 0.6241 (.0510)

Dependent Variable: Sadness
white -0.0706 (0.0460)
male -0.0310 (0.0582)

white × male 0.1480 (0.0642)
college degree 0.0332 (0.0302)

employed 0.0176 (0.02279)
age -0.0017 (0.0008)

income 2 -0.0863 (0.0442)
income 3 -0.2384 (0.0444)
income 4 -0.3464 (0.0471)
income 5 -0.4734 (0.0535)

with partner -0.3028 (0.0257)
ρ -0.3814 (0.1266)
N 9110

Notes: This table reports coefficient estimates from the health and happiness
specification. Standard errors (reported in parentheses) are Huber/White
sandwich estimates.

7 Conclusion

We formulate lattice ordered response models for narrow bracketing environments, identifying

parameters, thresholds, and the joint c.d.f. in a semiparametric framework. In the bivariate probit

parametric case, we separately identify βd and α
(d)
jd

using marginal probabilities, and ρ using

joint probabilities with an exclusive covariate. The lattice structure simplifies estimation, which

is suitable for empirical applications. Future work could further develop estimation methods and

approach identification with heteroskedastic errors.
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Appendix

Proof of Theorem 1. Fix dimension d, d = 1, . . . , D, for which the condition of this theorem

holds. Because of the lattice structure and Assumption 1 we have for any xd ∈ Xd,

P (Y cd ≤ y
(d)
j |xd) = Fd

(
α
(d)
j − xdβd

)
, j = 1, . . . ,Md. (9)

Take j ≤ Md − 1 that satisfies conditions of this theorem for this d.

Assumption 2 guarantees that P (Y cd ≤ y
(d)
j |xd) will not be degenerate for xd ∈ S(d;j) (in the

sense that it will not take values 0 or 1 only). Relation (9) is the basis of the identification

strategy. Strict monotonicity of c.d.f. Fd automatically gives us that for two xd.x̃d ∈ S(d;j),

P (Y cd ≤ y
(d)
j | x̃d) > P (Y cd ≤ y

(d)
j |xd) for some j ⇐⇒ x̃dβd < xdβd.

Thus, the identification is similar to the one in single-index models with a monotone link function

(e.g. see Manski (1988) for the statistical independence case or Manski (1985) (Lemma 2) for

the proof under large support). Notice that we do not need a large support condition for this

result.

Note that the sign of βd,1 can be identified from varying xd,1 within the interval (xd,1, xd,1) for

xd,−1 ∈ S̃
(d;j)
−1 . If P (Y cd ≤ y

(d)
j |xd) strictly decreases (increases) when xd,1 increases within that

interval, then βd,1 > 0 (βd,1 < 0). If it does not change then βd,1 = 0 but this case was ruled by

the conditions of the theorem. For concreteness suppose βd,1 > 0. Then normalize it as βd,1 = 1

to fix the scale.

Take bd ̸= βd (both are normalized in the same way so bd,1 = 1 and βd,1 = 1). The conditions

of the theorem imply that there exists a positive measure of x0
d,−1 ∈ S̃

(d;j)
−1 such that x0

d,−1β−1 ̸=
x0
d,−1b−1. Without a loss of generality suppose that for a positive measure of such x0

d,−1, we have

x0
d,−1β−1 > x0

d,−1b−1. For any x0
d,1 that complements x0

d,−1 to a point in S̃(d;j) we clearly have

x0
d,1 + x0

d,−1β−1 > x0
d,1 + x0

d,−1b−1. We can take x0
d,1 ∈ (xd,1, xd,1).

Due to the continuity of the regressor xd,1 on (xd,1, xd,1), one can find x̃0
d,1 slightly different from

x0
d,1 such that (x̃0

d,1, x
0
d,−1) ∈ S̃(d;j) and

x0
d,1 + x0

d,−1βd,−1

(∗)
> x̃0

d,1 + x0
d,−1βd,−1

(∗∗)
> x0

d,1 + x0
d,−1bd,−1.
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If b and β were both consistent with the observables, we would have from (*) that

P
(
Y cd ≤ y

(d)
j | (x0

d,1, x
0
d,−1)

)
< P

(
Y cd ≤ y

(d)
j | (x̃0

d,1, x
0
d,−1)

)
, (10)

and from inequality (**) that

P
(
Y cd ≤ y

(d)
j | (x̃0

d,1, x
0
d,−1)

)
< P

(
Y cd ≤ y

(d)
j | (x0

d,1, x
0
d,−1)

)
. (11)

Inequalities (10) and (11) give a contradiction for the probability on the left-hand side of (10).

This contradiction is obtained for a positive measure of (x0
d,1, x

0
d,−1). This implies that βd is

identified relative to bd. ■

Proof of Theorem 2. Fix a dimension d, d = 1, . . . , D, for which the condition of this theorem

holds. Also fix j = 1, . . . ,Md − 2. Then for xd ∈ S(d;j) and x̃d ∈ S(d;j+1) such that P (Y cd ≤
y
(d)
j |xd) = P (Y cd ≤ y

(d)
j+1 | x̃d) we have

Fd

(
α
(d)
j − xdβd

)
= Fd

(
α
(d)
j+1 − x̃dβd

)
∈ (0, 1).

Using the convexity of the support of εd in Assumption 1 and, thus, strict monotonicity of Fd in

the interior, we conclude right away that α
(d)
j+1−α

(d)
j = x̃dβd−xdβd. Since βd is already identified

by Theorem 1, we immediately conclude that α
(d)
j+1 − α

(d)
j is identified for any j = 1, . . . ,Md − 2.

■

Proof of Theorem 3. (i) Using the result of Theorem 2, we conclude that in this case all

the thresholds α
(d)
j , j = 1, . . . ,Md − 1 become known. Then all the underlying components

α
(d)
j − xdβd. From condition (1), we conclude that known α

(d)
j − xdβd cover the whole support of

εd (potentially with the choice of different j). Hence, known Fd(α
(d)
j −xdβd) for known α

(d)
j −xdβd

identify the marginal c.d.f Fd.

(ii) If Fd(e0d) = c0d, this allows us to find α
(d)
j = xdβd + e0d in the expression where Fd(α

(d)
j −

α
(d)
j ) = c0d. Once one α

(d)
j is known, we proceed as in (i). ■

Proof of Theorem 4. Consider

P
(
Y (1) ≤ y

(1)
j1
, . . . , Y (D) ≤ y

(D)
jD

|x
)
= F (α

(1)
j1

− x1β1, . . . , α
(D)
jD

− xDβD).

For any given value p0 ∈ (0, 1) of this observed probability, we want to pin down the whole

(D − 1)-dimensional surface of values α
(1)
j1

− x1β1, . . . , α
(D)
jD

− xDβD that produce this value.
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Let us identify the pre-image of c.d.f. F12 for any p0. Take any value of x1 such that

P
(
Y (1) ≤ y

(1)
j1
|x1

)
= p̃0 > p0.

Now we operate with processes that do have exclusive covariates. Start by varying exclusive

covariate x2,1. By the conditions of this theorem, by changing x2,1 alone we can force the choice

probability

P
(
Y (1) ≤ y

(1)
j1
), Y (2) ≤ y

(2)
j2
)|x1, x2

)
to vary from 0 to p̃0. We will consider only that variation that makes this probability p0. This

will identify the pre-image of the c.d.f F12 corresponding to p0. By taking p0 arbitrary in (0, 1)

we effectively identify the joint c.d.f F12.

Let us identify the pre-image of F123 for any p0. Take any value of x1 and x2 such that

P
(
Y (1) ≤ y

(1)
j1
, Y (2) ≤ y

(2)
j2
|x1, x2

)
= p̃0 > p0.

Now vary the exclusive covariate x3,1. By the conditions of this theorem, by changing x3,1 and

we can force the choice probability

P
(
Y (1) ≤ y

(1)
j1
), Y (2) ≤ y

(2)
j2
), Y (3) ≤ y

(3)
j3
)|x1, x2, x3

)
to vary from 0 to p̃0. We pick only those directions that make this probability p0. This will

identify the pre-image of the c.d.f F123 corresponding to p0. By taking p0 arbitrary in (0, 1) we

effectively identify the joint c.d.f F123.

Proceeding sequentially in this manner, we identify the overall joint c.d.f. F . ■

Proof of Theorem 5. Using the lattice assumption, P (Y (d) ≤ y
(d)
j | xd) = Φ(α

(d)
j −

xdβd). Apply Φ−1 to observed conditional probabilities to obtain linear equations of the form

Φ−1
(
P (Y (d) ≤ y

(d)
j | xd)

)
= α

(d)
j − xdβd. With kd + 1 distinct xd points and full rank the linear

system identifies α
(d)
j , j = 1, . . . ,Md − 1, and βd. ■

Proof of Theorem 6. (a) Since P (Y c1 ≤ y
(d1)
j1

|x∗
d1
) = Φ

(
α
(d1)
j1

− x∗
d1
βd1

)
, the condition of this

part means that α
(d1)
j1

−x∗
d1
βd1 = 0. Find the whole vector x∗ that has x∗

d1
as a vector of covariates

in the d1-th process, and extract x∗
d2

from x∗. If we can find j2 such that α
(d2)
j2

−x∗
d2
βd2 ≤ 0, then
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we consider the observed probability

P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) ≤ y
(d2)
j2

|x∗
d1
, x∗

d2

)
=

∫ α
(d2)
j2

−x∗
d2

βd2

−∞

1√
2π

e−
η2

2 Φ

− ρd1,d2√
1− ρ2d1,d2

η

 dη.

Because α
(d2)
j2

− x∗
d2
βd2 ≤ 0, the right-hand side is strictly increasing in

ρd1,d2√
1−ρ2d1,d2

and everything

else on the right-hand side is known. Therefore,
ρd1,d2√
1−ρ2d1,d2

is identified. Since
ρd1,d2√
1−ρ2d1,d2

in its turn

is a strictly increasing function of ρd1,d2 ∈ (−1, 1), this guarantees that identification of ρd1,d2 .

If α
(d2)
j2

− x∗
d2
βd2 < 0 for any j2, then instead we would consider the probability

P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) > y
(d2)
j2

|x∗
d1
, x∗

d2

)
and conduct an analogous identification strategy.

(b) The first inequality implies that α
(d2)
j2

− xd2βd2 and α
(d2)
j2

− x̃d2βd2 have the same sign and the

second inequality implies that this sign is opposite to the sign of α
(d2)
j2

−x⋄
d2
βd2 . For concreteness

suppose that the first two expressions are positive and the third one is negative.

The third inequality implies that α
(d1)
j1

− xd1βd1 and α
(d1)
j1

− x̃d1βd1 have different signs. Without

a loss of generality, α
(d1)
j1

− xd1βd1 > 0 and α
(d1)
j1

− x̃d1βd1 < 0.

Consider

P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) > y
(d2)
j2

|x
)
=

∫ +∞

α
(d2)
j2

−xd2
βd2

1√
2π

e−
η2

2 Φ

α
(d1)
j1

− xd1βd1 − ρd1,d2η√
1− ρ2d1,d2

 dη,

where the only unknown on the right-hand side is ρd1,d2 and − ρd1,d2η√
1−ρ2d1,d2

is strictly decreasing

in ρd1,d2 . Since α
(d1)
j1

− xd1βd1 > 00, then
α
(d1)

j01

−x
(1)
d1

βd1√
1−ρ2d1,d2

as a function of ρd1,d2 is decreasing on the

interval (−1, 0]. Hence, the whole right-hand of this probability expression is strictly decreasing

in ρd1,d2 on the interval (−1, 0]. Thus, among non-positive ρd1,d2 , there can be at most one value

that can generate observable left-hand side.

Consider

P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) > y
(d2)
j2

| x̃
)
=

∫ +∞

α
(d2)
j2

−x̃d2
βd2

1√
2π

e−
η2

2 Φ

α
(d1)
j1

− x̃d1βd1 − ρd1,d2η√
1− ρ2d1,d2

 dη,

Since α
(d1)
j1

− x̃d1βd1 < 0, then the right-hand side of the last equation is strictly decreasing in

ρd1,d2 on the interval [0, 1). Hence, among non-negative ρd1,d2 , there can be at most one value

that can generate observables.
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Thus, at this stage of the proof there can be at most two values (one non-negative and one

non-positive) in the identified set. Let us denote these two candidate values as ρ∗d1,d2 ≤ 0 and

ρ̃d1,d2 > 0.

Now consider

P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) ≤ y
(d2)
j2

|x⋄
)
=

∫ α
(d2)
j2

−x⋄
d2

βd2

−∞

1√
2π

e−
η2

2 Φ

α
(d1)
j1

− x⋄d1βd1 − ρd1,d2η√
1− ρ2d1,d2

 dη.10

Since α
(d2)
j2

− x⋄
d2
βd2 < 0, the equation

P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) ≤ y
(d2)
j2

|x⋄
)
=

∫ α
(d2)
j2

−x⋄
d2

βd2

−∞

1√
2π

e−
η2

2 Φ (b− aη) dη

considered for all observationally equivalent (a, b), delivers a strictly decreasing in a function

b(a) that generates the same P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) ≤ y
(d2)
j2

|x⋄
)
. It is easy to see that for both

a∗ =
ρ∗d1,d2√
1−ρ∗d1,d2

2
≤ 0, b∗ =

α
(d1)

j01

−x⋄
d1

βd1√
1−ρ∗d1,d2

2
< 0 and ã =

ρ̃d1,d2√
1−ρ̃2d1,d2

> 0, b̃ =
α
(d1)

j01

−x⋄
d1

βd1√
1−ρ̃2d1,d2

< 0 to be

compatible with the fact that they belong long to the curve (a, b(a)) with the strictly decreasing

b(·), it has to be satisfied that |ρ̃d1,d2| > |ρ∗d1,d2|.

Going back to x̃ note that since α
(d1)
j1

− x̃
(2)
d1
βd1 < 0, the equation

P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) ≤ y
(d2)
j2

| x̃
)
=

∫ α
(d1)
j1

−x̃d1
βd1

−∞

1√
2π

e−
η2

2 Φ (b− aη) dη

considered for all observationally equivalent (a, b), delivers a strictly decreasing in a function

b(a) that generates the same P
(
Y (d1) ≤ y

(d1)
j1

, Y (d2) ≤ y
(d2)
j2

| x̃
)
. It is easy to see that for both

a∗ =
ρ∗d1,d2√
1−ρ∗d1,d2

2
≤ 0, b∗ =

α
(d1)
j1

−x̃d1
βd1√

1−ρ∗d1,d2
2

> 0 and ã =
ρ̃d1,d2√
1−ρ̃2d1,d2

> 0, b̃ =
α
(d1)
j1

−x̃d1
βd1√

1−ρ̃2d1,d2

> 0 to be

compatible with the fact that they belong long to the curve (a, b(a)) with the strictly decreasing

b(·), it has to be satisfied that |ρ̃d1,d2| < |ρ∗d1,d2|. This is a contradiction with the previous

conclusion. Therefore, only one of ρ∗d1,d2 and ρ̃d1,d2 can generate observables.

(c) Denote x
(1)
d1

= (x
(1)
d1,1:L1

, xd1,Ld1
+1:kd1

) and x
(2)
d1

= (x
(2)
d1,1:L1

, xd1,Ld1
+1:kd1

).

We first consider the case when α
(d1)
j1

− x
(1)
d1
βd1 and α

(d1)
j1

− x
(2)
d1
βd1 take different signs – e.g.

suppose that α
(d1)
j1

− x
(1)
d1
βd1 ≥ 0 and α

(d1)
j1

− x
(2)
d1
βd1 ≤ 0.

10The reason we consider Y (d2) ≤ y
(d2)
j2

is because α
(d2)
j2

− x⋄
d2
βd2

< 0.
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For indices j1 and j2 in condition in (c), consider the probability

P
(
Y c1 ≤ y

(d1)
j1

, Y c2 ≤ y
(d2)
j2

|x(2)
d1
, xd2

)
=

∫ α
(d1)
j1

−x
(2)
d1

βd1

−∞

1√
2π

e−
η2

2 Φ (b− aη) dη, (12)

where a =
ρd1,d2√
1−ρ2d1,d2

, b =
α
(d2)
j2

−xd2
βd2√

1−ρ2d1,d2

. Because α
(d1)
jd1

− x
(2)
d1
βd1 ≤ 0, the right-hand side of (12)

is strictly increasing in a. It is obviously also strictly increasing in b. This means that for any

feasible a ∈ R we can find b2(a) such that

P
(
Y c1 ≤ y

(d1)
j1

, Y c2 ≤ y
(d2)
j2

|x(2)
d1
, xd2

)
=

∫ α
(d1)
j1

−x
(2)
d1

βd1

−∞

1√
2π

e−
η2

2 Φ (b2(a)− aη) dη,

and b2(·) is a strictly decreasing function. Now consider the probability

P
(
Y c1 > y

(d1)
j1

, Y c2 ≤ y
(d2)
j2

|x(1)
d1
, xd2

)
=

∫ +∞

α
(d1)
j1

−x
(1)
d1

βd1

1√
2π

e−
η2

2 Φ (b− aη) dη,

where a and b are the same as in (12). Because α
(d1)
j1

− x
(1)
d1
βd1 ≥ 0, the right-hand side of the

last expression is strictly decreasing in a. It is obviously also strictly increasing in b. This means

that for any feasible a ∈ R we can find b1(a) such that

P
(
Y c1 > y

(d1)
j1

, Y c2 ≤ y
(d2)
j2

|x(1)
d1
, xd2

)
=

∫ +∞

α
(d1)
j1

−x
(1)
d1

βd1

1√
2π

e−
η2

2 Φ (b1(a)− aη) dη.

Note that since we only vary the first Ld1 covariates in xd1 , which are excluded from xd2 , then

αd2
j2
−xd2βd2 does not vary. This implies that ρd1,d2 is identified because the strictly increasing b1(·)

and the strictly decreasing b2(·) can intersect only once and the argument at that intersection is

at
ρd1,d2√
1−ρ2d1,d2

, which can be inverted to give ρd1,d2 .

We now consider the case when both α
(d1)
j1

−x
(1)
d1
βd1 and αd1

j1
−x

(2)
d1
βd1 have the same sign. Suppose

that they are both non-positive.11 Without a loss of generality,

P
(
Y c1 ≤ y

(d1)
j1

, Y c2 ≤ y
(d2)
j2

|x(1)
d1
, xd2

)
> P

(
Y (d1) ≤ y

(d1)
j1

, Y (d2) ≤ y
(d2)
j2

|x(2)
d1
, xd2

)
.

11If they are both non-negative, then instead of considering the conditional probabilities of {Y c1 ≤ y
(d1)
j1

, Y c2 ≤
y
(d2)
j2

} we would consider the conditional probabilities of {Y c1 > y
(d1)
j1

, Y c2 ≤ y
(d2)
j2

}.
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Figure 8: Functions b2(·) (solid line) and b1(·) (dotted line)

Then both level functions b2(·) and b1(·) defined by equations

P
(
Y c1 ≤ y

(d1)
j1

, Y c2 ≤ y
(d2)
j2

|x(2)
d1
, xd2

)
=

∫ α
(d1)
j1

−x
(2)
d1

βd1

−∞

1√
2π

e−
η2

2 Φ (b1(a)− aη) dη

and

P
(
Y c1 ≤ y

(d1)
j1

, Y c2 ≤ y
(d2)
j2

|x(2)
d1
, xd2

)
=

∫ α
(d1)
j1

−x
(1)
d1

βd1

−∞

1√
2π

e−
η2

2 Φ (b2(a)− aη) dη

are strictly decreasing. However, the function b1(a) has a derivative that is strictly greater than

the derivative of b2(a) for all a in the intersection of feasible sets. Moreover, for all low enough

common feasible a the values of b1(a) are lower than the values of b2(a) and for all high enough

a the values of b1(a) are higher than the values of b2(a). This situation is illustrated in Figure 8.

Together with the strict inequality on the derivatives of these functions, these properties imply

that these two functions may intersect only once. Their intersection is at
ρd1,d2√
1−ρ2d1,d2

, which can

be inverted to give ρd1,d2 . ■
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