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Abstract

We analyze multivariate ordered discrete response models with a lattice structure, mod-
eling decision makers who narrowly bracket choices across multiple dimensions. These mod-
els map latent continuous processes into discrete responses using functionally independent
decision thresholds. In a semiparametric framework, we model latent processes as sums
of covariate indices and unobserved errors and derive conditions for identifying index pa-
rameters, thresholds, and the joint cumulative distribution function of the errors. For the
parametric bivariate probit case, we separately derive identification of regression param-
eters and thresholds, and the correlation parameter, with the latter requiring additional
covariate restrictions. We outline estimation approaches for semiparametric and parametric
models, present simulations illustrating the performance of estimators for lattice models,
and provide an application on the relationship between health and happiness rankings.
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1 Introduction

Ordered response models are fundamental in empirical economics, used to analyze discrete

choices with inherent ordering such as risk aversion (Malmendier and Nagel, 2011), political
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violence (Besley and Persson, 2011), or educational attainment (Cameron and Heckman, 1998).
These models map latent continuous variables to discrete outcomes via thresholds. While uni-
variate models are well-established (e.g., Cunha et al. (2007), among many others), multivariate
extensions, which allow researchers to capture joint decisions across multiple dimensions, have

received less attention.

We focus on a particular class of multivariate ordered response models with a lattice structure,
where decision makers narrowly bracket their choices, treating dimensions in isolation, in line
with the behavioral economics framework of narrow bracketing (Read et al., 1999). The lattice
structure is characterized by functionally independent decision thresholds across dimensions,
producing a grid-like latent space — hence our terminology “lattice models.”! In practice, lattice
models (often coupled with some parametric assumptions on the distribution of unobservables)
have served as the default and most straightforward extension of univariate ordered response
models in applied work. Komarova and Matcham (2025) explicitly adopts the term lattice models

to distinguish these restricted structures from more general multivariate formulations.

In this paper, we develop a formal and rigorous semiparametric framework for lattice ordered
response models, where latent processes are specified as linear combinations of covariates and
unobserved errors. We derive identification conditions for regression parameters, thresholds, and
the joint distribution of the unobservables. The literature on univariate ordered models pro-
vides several foundational insights that aid some identification results in multivariate settings
as narrow bracketing allows us to isolate decision-making across different dimensions. Namely,
under full independence between unobservables and covariates, identification of index parame-
ters and thresholds can rely on single-index methodologies just like in the univariate case. More
general semiparametric approaches have allowed weaker conditions: Lee (1992) studied median
independence following the Manski (1975, 1985, 1988) papers on maximum score, while Lewbel
(2000) and Chen and Khan (2003) allowed heteroskedastic unobservables with the latter focusing
on multiplicative heteroskedasticity. In our analysis, we maintain full stochastic independence
between unobservables and covariates to primarily focus on the identification and estimation
of the joint cumulative distribution function (c.d.f.), which is a topic largely unexplored in the

literature, even for lattice models.

Identification of the joint c.d.f. of unobservables in semiparametric models is a core theoretical
contribution of this paper. Understanding this joint distribution is crucial for policy analysis.
In lattice models, complementarity and substitutability in decision structures are not directly

modeled. Thus, all dependence in observed decisions (conditional on covariates) is captured by

IThis terminology is our own and is not standard in the literature.



the dependence among unobservables. This dependence structure is central to policy design
involving joint outcomes such as household decisions on healthcare and education investments,
where the correlation between latent factors determines whether bundled interventions reinforce
or crowd out each other. Semiparametric identification avoids restrictive parametric assumptions
(e.g., joint normality) that can distort estimated policy effects if mis-specified (Malmendier and
Nagel, 2011).

From an estimation perspective, we outline how existing semiparametric estimation methods can
recover index parameters and thresholds in a sample, and we discuss how one could estimate
the joint c.d.f. after those parameters are estimated at the y/n-rate. We also describe how the
approach of Coppejans (2007) can be extended to jointly estimate all unknown components in

one step.

For the parametric case, we focus on the multivariate normal specification, which conveniently
captures varying degrees of dependence.? Because the lattice structure allows identification re-
sults for thresholds and indices to extend from univariate models, our attention centers on iden-
tifying the correlation parameters. We provide several sufficient conditions for identification in
the bivariate case, including (i) configurations where one latent index is pinned at zero, (ii) vari-
ation in sign of index—threshold differences across subgroups, and (iii) the presence of exclusive

covariates that shift one margin but not the other.

In short, this paper provides a rigorous foundation for lattice ordered response models, estab-
lishing semiparametric identification and outlining estimation strategies that make these models
suitable for empirical applications where narrow bracketing is plausible, such as consumer pref-

erence formation (Train, 2009) and policy evaluation (Heckman and Vytlacil, 2007).

The remainder of the paper is structured as follows. After a short review of the related literature,
Section 2 introduces the general multivariate lattice model. Section 3 develops the semiparametric
specification, identification results and also discusses various approaches to estimation includiing
those that utilize existing estimation techniques for univariate models, Section 4 details the para-
metric model focusing on multivariate normal errors and identification of correlation coefficients.
Section 5 presents simulation evidence, and Section 6 provides an empirical application estimat-
ing a joint ordered response model for health and happiness rankings. Section 7 concludes. The

Appendix collects proofs of the main theoretical results.

Related Ordered Response Model Literature:

2 Alternative parametric specifications for the joint c.d.f. in bivariate ordered response models include Forcina
and Dardanoni (2008) and Ferdous et al. (2010).



Univariate ordered response models, such as ordered probit and logit, were formalized by McK-
elvey and Zavoina (1975) and Anderson and Philips (1981). Multivariate extensions, introduced
by Ashford and Sowden (1970) for bivariate probit models, account for correlated decisions.
The psychometrics and structural-equation literature adopted and extended the latent-variable
viewpoint to multiple categorical indicators. In particular, Muthén (1984) formalized a structural
equation framework that allowed dichotomous and ordered categorical indicators to be treated as
manifestations of underlying (multivariate normal) latent variables — effectively a multivariate
ordered model within the structural equation modeling (SEM) tradition. SEM/psychometrics
work (e.g., Olsson (1979), among others) set out approaches for polychoric/probit models for
multiple ordinal indicators. Kim (1995) explicitly proposed and implemented a bivariate cumu-
lative probit regression model for ordered categorical margins, with application and numerical
estimation details. For detailed coverage of various types of univariate ordered response model
we refer the reader to Agresti (1990), Boes and Winkelmann (2006), Stewart (2005), and Greene
and Hensher (2010). Greene and Hensher (2010) includes a review of recent applications of the
bivariate ordered probit model. Applications of trivariate ordered probit models include Buliung
and Kanaroglou (2007); Genius, Pantzios, and Tzouvelekas (2006) and Scott and Kanaroglou
(2002).

2 Model formulation

We model a single agent’s decisions across D > 2 dimensions, mapping a D-variate latent
continuous metric (Y*, ... Y*P) to a discrete metric (Y, ..., YP). Discrete responses in

dimension d are y](.d), j=1,..., My, with ordering ygd) <...< yﬂl.

Definition 1 (Lattice Model). A multivariate ordered discrete response model is a lattice model
if
Jp Ja—17""ja

(Y., Yer) = (y§1) <D)) =y e = (a(d) a(ﬂ Vd=1,....D,

with threshold normalizations

Vd=1,...,D, 'Y = 400 when Ja = My, oY = —0o when Ja = 0.

Ja Jd

Thresholds aﬁ) depend only on j4, ensuring functionally independent decision rules across di-
mensions. The intersections of these thresholds across different dimensions form a lattice in R”
(see Figure 1 for a couple of examples). This reflects narrow bracketing (Read et al., 1999), with

)

intervals I](j partitioning R and rectangles xgzlz](j) partitioning the latent space.
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3 Semiparametric specification

The d'" latent process is
Y*Cd:xdﬁd—l—éd, dzl,...,D,

where x4 is a row vector of covariates, §; a column vector of parameters, and ; an error
term. Errors in (g1,...,ep) may be correlated, allowing latent processes Y*¢ to be correlated

conditional on observables.

Let x = (x1,...,2p) and € = (ey,...,ep)" combine full vectors of covariates and unobservables,
respectively. Denote the joint c.d.f. of € as F' and the marginal c.d.f. of ¢4 as Fy, d =1,...,D.
The length of vector x4 is kg, d = 1,...,D. Let X; denote the support of x5 and for each d,
define

S ={zq € Xy | P(YD < y](‘d)|xd) €(0,1)}, j=1,..., My

and S = Uj]\idlS (), Let Z4m denote the mth component of x4 and x4 _,, denote the subvector
of x4 excluding the mth component, with similar notations for (. Sr(,‘f) denotes the projection of

S on Tgm With S(_dr)n being the projection of S@ on Td,—m-

3.1 Identification

d)

We derive identification conditions for [y, thresholds a§-d and the joint c.d.f. of unobservables

under certain assumptions. We start with Assumption 1.

Assumption 1. For alld=1,...,D, g4 is independent of x4 and has a convex support.

In univariate ordered response models, the assumption of independence between the unobservable
and covariates is common, being used in Klein and Sherman (2002), Coppejans (2007), among

others.® We formulate an analogue of a rank condition in the form of Assumption 2.

Assumption 2. S@ is not contained in any proper linear subspace of R* and P (S(d)) > 0,
foranyd=1,...,D.

Theorem 1 (Identification of index parameters: Semiparametric). Suppose Assumptions 1 and

2 hold and for each d = 1,...,D, for some j = 1,..., My — 1 the set S\%9) contains S =

3Some papers (see e.g. Chen and Khan (2003)) on univariate ordered response allow for heteroskedasticity. In
our framework, this would correspond to o4(z4, 0o)eq with independent 4. Some other papers further deviate from
the setting of independence. Lee (1992) considers ordered response under the median independence assumption
from Manski (1975, 1985). In a recent paper, Wang and Chen (2022) take a partial identification approach and
consider a generalized maximum score estimator when regressors are interval measured. All of these settings are
beyond the scope of this paper and provide avenues for extensions of our work.



(Zg1,Ta,1) ¥ 5(_d{j) where x,, < Tqy and §(_d{j) s not contained in any proper linear subspace of
REe=1 and P(g(_d{j)) > 0. In addition, suppose 41 # 0. Then, B4 are identified up to scale.*

Identification of threshold differences or gaps requires additional conditions to those assumed in

Theorem 1. This is given in Theorem 2.

Theorem 2 (Identification of threshold differences: Semiparametric). Suppose for a given d, the
conditions of Theorem 1 hold for any j =1,..., Mg — 1. Also, for any j =1,..., Mg — 2, there

is a positive measure of xg € S'%) such that
C, d C, d ~
P(Yd Syj(-)\:zrd> =P(Yd§y§+)1|xd>

for some &4 € S+ Then ag-(i)l — 04§-d) is identified, j = 1,..., My — 2.

The new condition of Theorem 2 would be guaranteed if for sets S and
S(di+1) the intersection of the sets of probabilities {P (ch < yj(d) |ch) x4y €S (d?j)} and
{P (ch < yﬁ)l |a:d) cxq €S (d?”l)} contains an interval (]_aj,ﬁj). Large support covariate con-

ditions would, for example, ensure that this interval is (0, 1).

Figure 1, which shows a bivariate lattice model, presents an intuitive summary of the identifi-
cation strategy in the models with lattice structures. We consider each dimension individually
and, within that dimension, express probabilities of discrete values up to certain points in terms
of the marginal c.d.f. of the unobservable in that dimension and the index in that dimension.
Theorem 1 is based on considering just one shaded area for many different x, — either the one
the left panel or the one on the right panel in Figure 1. Theorem 2 requires the computation of

both shaded regions for many different z.

The result of Theorem 2 immediately implies conditions for identification of marginal distribu-
tionsof 4, d=1,...,D.

Theorem 3 (Identification of marginal c.d.fs: Semiparametric). Suppose conditions of Theorem

2 hold for some d. Suppose that

U uyr (Y<d> < y§d>|xd> = (0,1). (1)

§=1,sMg—1 g€ 5(dsi)

4For notational simplicity, we suppose that it is the first covariate that varies within an interval and has a
non-trivial impact within dimension d. This is without a loss of generality, and generally, it can be some other
covariate g, n,(g) with such properties.



FIGURE 1: Intuition for lattice model identification

agl) Oél) Ckgl) aél)

Notes: Left region in the latent space corresponds to P (Y(l) < y \x1> Right region corresponds
to P <Y(1) <y |x1>

Then Fy(-) is identified if (i) either one of the thresholds among aéd), j=1,...,M;—1, is
normalized to a known value, or (ii) if there is a normalization of one of the values of c.d.f. Fy,

say Fy(eoq) = coa, for some known ey in the support of e4 and some known coq € (0,1).

The condition in Equation (1) ensures that any point in the support of £, corresponds to the

underlying aéd)

— 24034 for some j and z4. Condition (i) explicitly normalizes one threshold
(the identification of values of the other thresholds then immediately follows from Theorem 2),

whereas condition (ii) enforces a normalization of one threshold in an indirect way.

The result of Theorem 3 does not guarantee identification of the joint distribution of unobserv-
ables, even if the conditions of this corollary hold for every d =1, ..., D. The reason is two-fold.
First, Assumption 1 does not give any information about how the vector ¢ relates to xy, h # d.
Under a full stochastic independence of the vector £ from the whole vector z, the identification
process is easier as P(e; < ey,...,ep < ep|z) does not depend on x and we only need to identify
one D-variate c.d.f. F(ey,...,ep) = P(e; <ey,...,ep < ep). The main channel through which

we can proceed with the identification of F' is by considering observed probabilities
1 D 1 D
P (Y(l) S y§1)7 s 7Y(D) S ygD)|x> = F(O[gl) - xlﬁl) s ,O{§-D) - xDBD)

but then the question becomes of whether the data provides enough joint variation in indices
(x1B1, ..., xpPp) to identify F' on the whole support £ of €. The issue is that some (potentially
each) x4 could share all its covariates with another process. In this case ( —x161,. .. D) —
xpfp)’ could take values only in a proper subset of £ and could vary only in certaln dlrectlons as

we vary the values of covariates. Since at this identification stage, ( —x154, ]D) —xpPp)
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F1GURE 2: Illustration of the identification of joint c.d.f. of ¢

€2

27777777

Ty

€1 €11 €12 €1

is observed, one could try and assess whether this vector covers the whole support £. We present

conditions under which this is guaranteed. The illustration of our idea is given in Figure 2

(1)

for D = 2. In one dimension (e.g. for ;) we ensure that a;’ — x11 can cover the whole

marginal support of €1 (can be checked using conditions of Theorem 3). In the other dimension

(e.g. for €9) we can require an exclusive covariate with non-zero coefficient — without a loss of
(2)

generality xo; — that can provide enough own variation in a, T2 P9 while keeping x13; fixed.

In Figure 2, this variation is shown using vertical arrows. Once x5, is fixed, this variation can

be checked to cover both lower and upper boundaries of £ (either finite or infinite) by checking
1 2

whether sup;, sup,, | F(a§-1) —x15, a§-2) §

and whether infj, inf,, F(agi) — 1/, ozéz — x9f) is 0 (lower boundary). For general D, this

— x9f02) coincides with F(« 1) —x101) (upper boundary)

)

identification strategy can be translated into the requirements on exclusive covariates in D — 1

processes.

Theorem 4 (Identification of joint c.d.f: Semiparametric). Suppose all conditions of Theorem
3 hold for each d = 1,...,D and, hence, all the index parameters (subject to normalizations),

thresholds, marginal c.d.f.s are identified.

In addition, suppose that

(a) € is independent of x;

(b) at least D — 1 processes — without loss of generality processes 2 to D — have x4, d =

2,...,D, as an exclusive covariate with support large enough® to ensure that for some

°It does not have to be infinite — it depends on the support of the underlying .



(j1,72,---,Jp), for eachm =2,..., D,

inf P (O (V0 <) [ (@) ) =0 (2)

_ — JJk
xm,l‘(zk);gnzllazm,—l

m k m—
sup P (ﬁkzl(y(k) < yﬁk)) | (x’“)kﬂl’xm)

Tm,1 ‘ (-’Ek)’]’cn:_ll sy Tm,—1

=P (MRl ® <) | @s!) )

for any (x4)}7! such that P (ﬂ?:_ll(Y(k) < "y (xk)?:_ll) € (0,1).

Jk

Then the joint c.d.f. of unobservables is identified.

Conditions (2) and (3) guarantee that ( 51) — 1101, ... ,aﬁ-? — xpfp)’ for some ji,...,jp when
taken in any direction \ in RP, can reach the boundary of £ in both positive and negative

directions of \.

To illustrate the progressive restrictiveness of the identification conditions outlined in Theorems
1 through 4, we construct four nested data-generating processes (DGPs) for a bivariate (D = 2)
lattice model, each building sequentially on its predecessor. Each latent process contains a two-
dimensional covariate vector associated with 5 = B2 = (1,0.5)". In each dimension, there are
three ordered responses, and the threshold differences are 2. Suppose the vector of unobservables

is independent of covariates and has a joint normal distribution.

In DGP 1, covariates are defined as 1 = 22 = (Zcommon1, Tcommon2), Where Zeommon1, Leommon2 ~
Uniform[—0.5, 0.5] and Zcommon1; Tecommonz are not perfectly linearly related. This DGP provides
limited support for z18; and x9f, (it is within [—0.75,0.75]). Theorem 1 is satisfied, which
ensures identification of 1, By up to scale, but fails to meet the conditions of Theorem 2 as
it lacks overlaps in choice probabilities for threshold differences, Indeed, P(Y“ < y ]xd) €
[agd) —0.75, ozg )+ 0.75] whereas

Py <yPlzg) € 2+ ot —0.75,2 + al? +0.75] = [0l? + 1.25,01? + 2.75]

with [od? —0.75, al® +0.75] and [o!? +1.25, a{?) + 2.75] obviously not overlapping. The narrow
range of the mdlces precludes the probability matching required by Theorem 2.

DGP 2 extends the first by widening the support of covariates: Zeommon1 ~ Uniform[—2,2],

Teommonz ~ Uniform[—0.5,0.5] enabling overlaps in conditional probabilities (e.g., P(Y% <

9



v VNza) € [af? —2.25,a{” +2.25] and P(Y < i¥|z,) € [a1” —0.25,{”) +4.25]). This satisfies
the conditions up to Theorem 2 but falls short of Theorem 3, as the support, while sufficient for
probability matching, does not fully cover the interval (0, 1). The added restrictiveness stems

from the need for broader support to align probabilities, yet the coverage remains incomplete.

DGP 3 further extends the second by setting Zcommon1 ~ Laplace (full support), Zeommon2 ~
Uniform[—0.5, 0.5] to ensure full probability coverage over (0, 1), and incorporates a normaliza-
tion Fy(0) = 0.5. This setup satisfies the conditions up to Theorem 3 but fails Theorem 4. as
the absence of exclusive covariates prevents independent shifting of dimensions to capture joint

dependence.

DGP 4 builds on the third by defining z..q1 ~ Laplace, Tepqs ~ Laplace, Teommonz ~
Uniform[—0.5,0.5] (the support of the distribution of (Zeze1, Tewei2; Teommon2) has an interior
in R3, This allows independent shifting of dimensions 1 and 2, satisfying the requirement of
Theorem 4 (note this theorem only requires independent shifting of one dimension, but for sim-
plicity we allow that in both dimensions). All the parameters including the joint c.d.f. can then
be identified fully.

3.2 Estimation

In what follows, we briefly outline some possibilities for estimating parameters in semiparametric
models. A theme of this section is to describe existing univariate ordered response estimation

methods that generalize to lattice models.

Two-step approach The idea of this method is to (i) use existing estimation approaches for
semiparametric univariate ordered response models to estimate index and threshold parameters
at a suitable rate (albeit suboptimally as the dependence of the latent processes is ignored), and

(ii) construct estimates of the joint c.d.f. using well-known statistical methods.

We start by discussing which estimation approaches in the literature can be utilized in the first

step.

Lewbel (2000) develops a semiparametric estimator for qualitative response models (binary,
ordered, multinomial), allowing for unknown heteroskedasticity in the latent errors with respect
to regressors, or instrumental variables for endogeneity. The method relies on a “special regressor”
v that is conditionally independent of the error e given other regressors x (i.e., L, .(c | v,2) =

F iz (¢ | x)), with large support. The estimator resembles OLS or 2SLS on a transformed response

10
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y* = [y —I(v < 0)]/f(v | =), where f is the conditional density of v given z, yielding for
ordered response models y/n-consistent and asymptotically normal estimates for coefficients
and thresholds (for ordered models).

To generalize Lewbel (2000) to lattice models, we need to have x; = (vg, wg) with a continuous
special regressor vy with large support per dimension d — this would effectively extend our As-
sumption 2 (and accommodating heteroskedasticty by allowing Var(e4 | z4) to be arbitrary). The
estimator would proceed marginally per dimension using the Lewbel (2000) ordered method to
recover [3; and thresholds a§-d). Lewbel (2000) considers a univariate ordered response, hence the
question of joint c.d.f. does not arise (note, however, that for multinomial choice the estimation

of joint c.d.f. of unobservables is relevant but Lewbel (2000) does not address it).

The Klein and Sherman (2002) approach analyzes the univariate model and estimates the index
parameter in the first stage using kernel density estimates of the conditional probability of
choosing below a certain level. In the second stage, the approach estimates threshold parameters
using shift restrictions. We can extend this approach to multivariate lattice models because
the functional independence of thresholds across dimensions allows us to apply stages 1 and
2 marginally for each d = 1,..., D, using univariate techniques and our Assumption 1 which
mirrors the assumption of independence in Klein and Sherman (2002) and leads to P(Y4 <
y§d)|xd) = Fd(a(-d) — x484). The estimators of index and threshold parameters obtained from this

J
stage are \/n-consistent and asymptotically normal.

Chen and Khan (2003) derives rates of convergence for estimating index parameters in het-
eroskedastic discrete response models, assuming multiplicative heteroskedasticity ¢; = o(x;) - u;,
where u; is homoskedastic and independent of z;. For ordered response models with at least three
categories, y/n-consistent estimators are possible. To generalize Chen and Khan (2003) to lattice
models, we can consider each dimension d separately and consider at least three responses in
that dimension. At the same time, we can generalize it to multiplicative heteroskedasticity per
dimension: g4 = 04(x4) - ug, where uy is homoskedastic and independent of z4. The Chen and
Khan (2003) estimator for index parameters and thresholds proceeds marginally per dimension.
Marginal stages inherit rates from Chen and Khan (2003): y/n-consistent 4 and o?éd) for My > 3.

Liu and Yu (2024) proposes two simple semiparametric estimators for univariate ordered response
models with an unknown error distribution Fy, achieving y/n-consistent and asymptotically nor-
mal estimators of the index parameters and thresholds. The first method (binary choice-based)
constructs nonparametric maximum likelihood estimates (NPMLE) of Fy from recast binary
data, then uses moment conditions for index and threshold parameters. The second method

(full ordered data) extends this by incorporating all outcomes via a weighted NPMLE. Both

11



enforce monotonicity of Fj and use bootstrap for inference. In lattice models, one can apply
Liu and Yu (2024) methods marginally per dimension to estimate 3; and thresholds Oéj(d) (up to

scale/location). All these estimators will be \/n-consistent and asymptotically normal.

Thus, all these approaches are suitable when one’s goal is to estimate index and thresholds
parameters. Given these estimates, one can now proceed with the estimation of the joint c.d.f.
F in the second stage (this, of course, is not addressed in the papers mentioned above due to
the univariate nature of the problem there). Now we discuss some specific approaches that can
be used to obtain .

One possible approach is the g¢rid inversion method that discretizes the error space and
solves a constrained optimization problem. It is a direct, computationally intensive non-
parametric method. We outline it for D = 2. Its idea is based on the fact that given
x; = (w41,12) and (Yj(lcl) y](ll),Y](2 2 — yp)) the latent pair (e1;,€9;) lies in the rectangle

d .
R = x2_, (aﬁ-d) 1 — Tiafd, 5 ) x;4fPq| and, hence, due to independence of errors from covari-

ates,

P(Y(Cl) = y](ll)’y(cQ) = y§§) ’ X = x Z Z ngQF 3(1) A $1151,04§3)_g2 - 331‘252)- (4)

¢1=042=0

In the sample each observation ¢ implies a rectangular interval RL = & €
X2_, (dgzi)_l — xdigd, &gjzi) — xdlﬁd} for the residual &;, where j4(i) is the observed category
in dimension d for i (with —oo, 400 boundaries). Let G = {(e14,e2¢0) : k = 1,..., Ky, { =
1,..., Ky} be the set of unique lower/upper bounds from all such implied sample rectangles. Let
¢ = (F(elvk?627£))k7£ € RE1K2 collect the unknown c.d.f. values on this grid. We want to find
the probability mass assigned to each grid point such that the implied probabilities for each cell
match the empirical probabilities in the data as closely as possible. To do this, for each distinct

covariate pattern z, (group), define the empirical cell probabilities

1
Zi:mi:xg {Y( = yj(1)’ - y]2)}
> Lwi = xy)

~ - c 1 c 2
T 5152 (xg) = P(Y;( V= yj('lzi)vyi( 2 — yj(ézi) ’ X = xz) =

Then for each (j1, j2, 9),

7TJ1]2 ‘Tg § :AJ1]2 g k E) ¢k€ + WUj1ja,g>
k0

where A; ;, ,(k,¢) € {—1,0, 1} encodes which c.d.f. corner terms enter each rectangle probability

12



using (4). Stacking over all (ji,jo,9) yields A¢p = T + u, where 7 collects all empirical cell
probabilities. We can estimate ¢ as ¢ = arg mingeq || Ad — 7||?, where the feasible set ® enforces

the defining properties of a c.d.f.
P = {¢:0 < ¢pe <1, ¢ nondecreasing in k and in ¢} .

Optionally we can include a smoothness penalty and optimize mingeq ||A¢ — 7||* + M| Do||%,

where D is a finite-difference matrix. The estimator provides

F(eyk,e2s) = e,

which can be extended to a continuous surface by bilinear interpolation. There are some vari-
ations of this method. E.g., instead of the grid determined by the implied rectangular regions,

one can consider a completely exogenous sample-free grid.

Another option is the kernel smoothing approach. Just like the inversion grid method it uses
the fact that ¢; € R; given z; = (x;1,x;2) and (Yj(lcl) = yj(-ll), Yj(f) = J(f)), and with R; defined in
the same way as in the grid inversion method. In the sample each observation ¢ implies &; € R;.
We can implement a simulated kernel density estimator, where for each observation ¢ we draw
S random samples (E{f),é{;)) uniformly from its rectangle R;. We then pool all these N x S
simulated points together. We then perform a standard bivariate kernel density estimation on
this large pooled sample. The resulting density is an estimate of f(e1,£2). We can then integrate

this estimated density numerically to get the estimated c.d.f.

Other possible approaches include nonparametric sieve estimator subject to suitable choice of
base (for monotonicity-preserving properties) and nonparametric maximum likelihood estimator.
We have implemented the grid inversion and the simulated kernel density estimator in simulations

but not the other approaches.

One-step approach If one is interested in estimating the joint c.d.f of unobservable ¢ (for
purposes of analysing policy intervention or other counterfactuals), then one could extend Coppe-
jans (2007) originally developed for univariate ordered response models under independence of
the error and covariates. In what follows, we extend it to multivariate ordered response mod-

els, describing the bivariate case for illustrational simplicity. Suppose we have a random sample
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. AN
{(y(l)(’), y@@) g0 xg))}' . The idea is to maximize the log-likelihood function

L) =+ Z DD [(y“)( ), y@0) = (5, 5?)] log(£ ), where (5)

ﬁg-?m = F <a§-}) - azgi)bb ag) - xéi)bz) - F (aﬁ)_l - xgi)bl, ag) — a:g)b2>
= F(af) ol = o)+ F (o) —afb ) - ah) ()

for joint c.d.f. of unobservables F'. Coppejans (2007) uses a quadratic B-spline to estimate the
c.d.f of unobservables. The multivariate analogy is tensor-product B-splines. For instance, in the

bivariate case the tensor-product basis consists of S; - Sy products of polynomials R in the form

Risis(€1;5q1)Rasy s5(€25q2), s1=1,...,51, sa=1,...,95,

here calculated for specific values of e; and ey, with ¢; denoting the degree of B-spline in di-
mension d = 1,2. A general tensor-product B-spline, which approximates F'(eq,es), is a linear
combination of these base tensor-product polynomials with coefficients {hs,s,}, s¢ = 1,...,Sq,

d=1,2:
S1 S

Z Z h5152R1;31,51 (61; q1>R2;32,SQ (62; QQ)

s1=1s2=1

The linear constraints

h3132§h31+1,527 ‘v’slzl,...,Sl—l, 52:1,...,52
h5132§h31752+1, \V/SQZ].,...,SQ—]_, 81:1,...,51

guarantee monotonicity of the tensor-product B-spline in each dimension. Additionally, the linear
constraints

0 S h31,82 S 17 v51752

guarantee natural c.d.f. bounds of 0 and 1.% Linear equality constraints on hg,,, can impose

normalization restrictions on Fj.

6For more details on shape constraints in tensor-product B-splines, see Bhattacharya and Komarova (2022).
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4 Parametric specification

In practice, a researcher may choose a parametric family to model the distribution of unobserv-
ables conditional on covariates. On the one hand, choosing a parametric family allows researcher
to explicitly model the distribution of observables as that depending on z and be able to identify
all the primitives given the assumed (potentially complicated) dependence structure. The exact
identification strategy and assumption behind it will depend on the assumed structure. On the
other hand, a researcher may still opt for independent errors and covariates and rely on less
stringent data requirements for identification than those given in Section 3 as well as a simpler

estimation approach.
We illustrate the latter case focusing on the lattice ordered probit (Gaussian errors) case.

Assumption 3 (Joint normal errors). The vector € is independent of x and follows N (0, %)

where X has ones on the diagonal and correlation py for as an off-diagonal (k,1)-element.”

4.1 Identification

As expected, due to our ability to view decisions rules across different dimensions, index and
threshold parameters can be identified using the same rank condition commonly employed in
univariate ordered probit models. This is formally presented in Theorem 5 below. Its proof is

well known and we replicate it in the Appendix purely for completeness.

Theorem 5 (Identification of index parameters and thresholds: Parametric). Suppose Assump-
tion 3 holds. If for a fized dimension d there exist kg + 1 points {xﬁj’}fgl C Xy such that the

matrix
(1)

1 x,
1 ng)
1 x&kd‘i’l)

has rank kg + 1, then B4 and the thresholds {aﬁ»d) }j]\idfl are identified.

Identification of correlation coefficients pg, 4, in the multivariate lattice setting does not follow

from any readily available results in the literature. We carry out this identification in the pairwise

"Note we have already normalized the means and variances of €4, d = 1,..., D, as it is easy to show that
otherwise that the best hope is identification up to a scale and a shift. Theses are also usual scale/location
normalizations used for example in multinomial probit.)
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manner under supplementary variation/exclusion conditions. They are collected in Theorem 6

below.

Theorem 6 (Identification of pairwise correlations: Parametric). Suppose Assumption 3 holds
and Theorem 5’s conditions hold for dimensions d, and dy. Then the correlation pq, 4, s identified

iof at least one of the following holds:

(a) there exists x}; such that for some j = 1,..., Mq—1 it holds that P(Y* < y§f1)|x21) = 0.5,

(b) There are points x,T,xz° € X such that for some j; = 1,..., Mg, — 1, jo=1,..., My, — 1,

(P(Y® <y |ea,) = 0.5)(P(Y < ys”)[Zay) — 0.5) > 0,
(P(Y*2 < yi™|zg,) — 0.5)(P(Y? < ¢\%)|25,) — 0.5) > 0,

J2

(P(Y < '™ |zg) — 0.5)(P(Y < '™ |7,) — 0.5) < 0

(c) there exists a subvector in x4, — without a loss of generality suppose it is Ty 1:Lg, s Lay 2 1,
— such that at least of the parameters in ﬂdhl:Ldl 18 not zero and and Ty 1Ly, 18 excluded

from x4, — that is,
T, 0| Tay, has a non-degenerate distribution, [ =1,..., Lg,.

Let Xy,4, denote the projection of X onto the (kq,+ka,)-dimensional space of covarites in di-

mensions dy and dy and suppose there are two different points in Xy, q,that differ only in the
. . h

value of covariates in the subvector Tdy,1:Lg, ~ denote them as (x((il?lzLdl7xd17Ld1+13kd17xd2)7

h =1,2, - such that for some indices j1 < Mg, — 1, jo < My, — 1,

d d 1
P <Y(d1) < y](_11)7Y(d2) < y§22) |J;Eh)’l:Ldl,ZEdhLdl—f—l:kdl,[E(b) 7A

P (Y(dl) < ?/j(fll), y(®) < y](jz) |5175121),1;Ld17$d17Ldl+1:kd17$d2) :
Condition (a) requires a covariate configuration where the latent index in one dimension (d;) is
exactly at some threshold. It creates a “pivot” where the error g4, is symmetrically distributed
around zero, making joint probabilities with dimension 2 purely a function of pg, 4,’s influence
on £4,. Condition (b) requires sign-flipping covariates. Namely, it assumes covariate variation
creating “same-sign” indices in one dimension (both above or both below the median threshold)
but “sign-flipping” in the other. There are other ways to formulate related sufficient conditions
in this spirit but we have opted to present this one. Condition (c) is an IV-style exclusion: a

covariate (or subvector) affects dimension d;’s outcome (via assocated nonzero (4 ’s) but not
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dimension dy’s directly (exclusion from z4,). By having a variable that affects only one outcome,
we can trace out how joint probabilities shift when one margin’s latent index moves while the
other stays fixed. This variation rotates the joint probability surface (enough to do it once),

letting us solve for pg, 4,

4.2 Estimation in the parametric model

Estimation in the parametric model is standard via maximum likelihood. The log-likelihood
function in the bivariate case is equal to that in equations (5) and (6) with a specified cumulative
distribution function F'. We use bivariate normal as the natural example of F', as in Assumption
3, so that € = (e1,¢€2)" is jointly normal with mean (0, 0)’, unit variances, and correlation p. Given
a random sample {(y(l)(i), yP0) a:gi), xg))}jv 1 and collecting 31, 2, p and all the thresholds in «

in one parameter vector 6, we construct the log-likelihood function

N My M

N
1 N i 1 ;
£0) = w300 31 [0 y00) = ()4 2)] og(E,,0)) = 1 D los(t0(0))
=1

i=1 j1=1j2=1

1 1
. % 1 % 2 %
with 621)7]'2 - Z Z(_l)tl+t2¢)2 <a§'1)—t1,j2 B xg)ﬂl’a§'1?j2—t2 - x962;p) ?

t1=0t2=0

where ®y(-, +; p) denotes the standard bivariate normal c.d.f. with correlation parameter p.

The maximum likelihood estimator (MLE) 6 solves the optimization problem maxy £(6).8 Under
the typical MLE regularity conditions (Newey and McFadden, 1994), we have v N (é — b)) N
N(O, V),V =E 61°g(§;)(9°))81°g(§g,) (90))]. The natural plug-in sample-analogue estimator of V/
provides a consistent estimator for the variance-covariance matrix.

5 Simulations

We consider a bivariate ordered response model with

Y = 2B + e, (7)
Y2 = 29; 02 + €. (8)

80ne can impose inequality constraints on a and p and maximize a constrained likelihood, or, more straight-

forwardly, re-parameterize the likelihood to estimate ozgj), \/ozéj) — ozgj), cees \/oz%[)d — 0‘5\2—1 and tanh ~1(p) so
that constraints are enforced automatically.
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TABLE 1: Overall performance comparison

Method RMSE KS Distance CvM Distance Correlation

Grid Inversion 0.07232 0.192247 0.005244 0.991955
(0.003677) (0.011666) (0.000534) (0.000509)

Kernel Smoothing  0.026877 0.073202 0.000729 0.996752
(0.002509) (0.007906) (0.000138) (0.000420)

Notes: All metrics are calculated on evaluation grid with 80 x 80 = 6,400 points and
then averaged across 400 simulations. Parentheses contain standard deviations across
simulations. Lower values indicate better performance for all metrics except correlation.

5.1 Semiparametric model

Here we focus on two-step approaches. We take the index and threshold parameters to be known
(in reality, they would have been estimated consistently at /n rate) and just focus on the
estimation of the joint c.d.f. given these parameters. This allows us to compare the performance
of different second-stage approaches in their pure form without first-stage inference.” We take

both x1; and x5; to be univariate with respective g1 = 0.8, By = —0.5. We adopt 3 x 3 categorical

outcomes with the thresholds determining the decision structure given by oz(()l) = —00, a§” =—1,
ozél) =1, ozél) = 400 for dimension 1 and oz((f) = —00, a(12) = —0.8, af) = 0.8, ag) = +o0. for

dimension 2. We take z; ~ N(0,1), 2 ~ 0.5N(0,1) + 0.3z, and € is bivariate normal with
mean zero, unit variances, and the correlation coefficient 0.6. We draw S = 10 points from the

rectangle associated with observation 4.

We compare the performance of our estimators on an 80 x 80 evaluation grid over [—2.5,2.5]%:
We use G = 6,400 to denote the number of points in the evaluation grid and g to denote a par-
ticular point on this grid. As criteria we use Root Mean Square Error \/é ZZ:1(F(9) — F(g))?
(RMSE), Kolmogorov-Smirnov (KS) distance max, |F'(g) — F(g)|, Cramér-von Mises (CvM) dis-
tance éZle(F(g) — F(g))? and correlation corr(F, F).

Table 1 presents simulation results comparing both approaches on the average of the four metrics
in 400 simulations. Figure 3 plots the contour curves for the true and estimated c.d.fs for grid

inversion (left-hand side) and kernel smoothing (right-hand).

Based on the results in the table and the figure, the kernel smoothing method outperforms the
grid inversion method across all four metrics. We do not pursue further with regard to how well
these methods do with regard to various regions (central vs tail ones) or which method performs
better with regard to some specific distributional characteristics such as entropy, or tail mass, but

one could of course pursue this type of simulation analysis as well. It may very well be the case

9Moreover, first-stage estimation approaches come from already existing literature.
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F1GURE 3: Illustration of the joint c.d.f. estimation in step 2 of two-step approaches

Overlay: True (Black) vs Est (Red)
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(a) Grid inversion method (b) Kernel smoothing method

Notes: The graphs present contour curves for the true and estimated c.d.f.

that the grid inversion method may perform better in other criteria, as it explicitly incorporates
the ordinal response structure through the design matrix A and its associated constrained least

squares formulation provides a globally optimal solution for the discrete approximation.

5.2 Parametric model

We now examine Monte Carlo simulations for the parametric case with normal errors. For the
purposes of the simulations, we rewrite Equations (7) and (8) as

Y = 2By + wiymn + s Y = 28y + waiya + €2

(2

to distinguish exclusive (w) and non-exclusive (x) covariates. We explore a first scenario with no
exclusive covariates (71 = 72 = 0), a second scenario with an exclusive covariate in one latent
process, and a third scenario with exclusive covariates in both latent processes. Each simulation
design uses 400 independent random samples of size 1,000. A summary of the simulation results
is that in all models, which vary in their number of discrete values My, type of regressors (discrete
or continuous) and exclusivity of regressors, all parameters are estimated with essentially no bias;

threshold and index parameters are estimated more precisely than the correlation parameter.
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FIGURE 4: Latent variable space in Parametric Design 1

Parametric Design 1: 2x2 structure, no excluded regressors

We investigate parametric estimation without exclusive covariates by setting v; = v2 = 0, thus
removing w; and we. We set 51 = 3, f2 = 2.5, p = 0.33, and use a 2 X 2 non-lattice structure with
thresholds agl) =1 and af) = 1.25 (see Figure 4). The common regressor = follows a uniform
[—4, 4] distribution.

Table 2 Panel 1 reports mean and standard deviation of parameter estimates. The method
estimates all parameters with minimal bias. Estimates of p are less precise due to the absence of

excluded regressors.

Parametric Design 2: 4x3 with one excluded covariate

In the second simulation design, we extend the number of discrete values My in both dimensions.
The discrete dependent variable Y can take four values and Y can take three values. This
generates a 4x3 structure, illustrated in Figure 5. The common covariate = follows a uniform
[—2,2] distribution (alternatively we could have taken it to be discrete). The covariate w; is
a discrete random variable taking values -2.5, -1.5, -0.5 and 0.5 with equal probability. We set
v = 0 thus effectively removing ws in the second equation. The parameter values are 5, =
2,7 =—3,P2 =3 and p = 0.25.

Table 2 Panel 2 lists the across-simulation means and standard deviations of the index parame-
ters, thresholds, and the correlation coefficient. The bivariate ordered probit method estimates all
parameters with essentially no bias. The correlation parameter remains the least precise estimate

across parameters.
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TABLE 2: Parametric simulation results

Parameter Truth Mean SD
Panel 1:
B 3 3.08 0.35
Bs 2.5 2.53 0.23
p 0.33 0.34 0.14
al! 1 1.02 0.16
ol 1.25 1.26 0.15
Panel 2:
B 2 2.02 0.10
" -3 -3.03 0.15
Ba 3 3.01 0.16
p 0.25 0.26 0.09
al! 15 -1.51 0.12
) 0.6 0.60 0.10
all 4 4.04 0.21
al? 25 -2.50 0.15
al? 2 2.02 0.13
Panel 3
B 1.75 1.75 0.08
" -2.75 -2.76 0.12
Ba 2.5 2.65 0.39
- 4 -4.24 0.64
8 2 2.11 0.32
p 0.5 0.53 0.19
ol -7 -7.04 0.31
all 5 -5.01 0.21
all 0.75 0.75 0.08
al 2.5 2.51 0.13
al 4 4.00 0.18
al? -2 -2.10 0.33

Notes: This table reports the sample mean and sample stan-
dard deviations of the estimates of the parameters, over 400
samples. The panels correspond to the respective designs.

21



FIGURE 5: Latent variable space for two equations: Design 2
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Parametric Design 3: 6x2

We consider a design that creates a 6 X2 structure on the latent variable space. Figure 6 illustrates
the threshold structure and the values of thresholds. In this design, the common regressor x is
drawn from uniform [—2,2] and both latent equations have excluded regressors wy, wy w t7. We
also include an additional regressor zy in equation 2, drawn from a logistic (3,2) distribution.

The parameter corresponding to z3 is denoted do, so that the latent equations read

Y = xif +win +en
YV'® = 2By + waye + €9 + 2202

The parameter values are 1 = 1.75, B, = 2.5, v1 = —2.75, 75 = —4, and J, = 2. Table 2 presents
the results for the index parameters, thresholds, and the correlation coefficient. Generally, all
parameters are estimated with low bias, though slightly more bias in the parameters in the

second dimension compared to the first.

6 Application

Now we study the main factors driving self-reported health and happiness as well co-movement
in unobservables driving them. To do this, we pool data on the United States of America and
Canada from six waves of the World Values Survey (Inglehart et al., 2014). The results are also

fully robust to the use of a different dataset: the National Health and Nutrition Examination
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FIGURE 6: Latent variable space for two equations: Design 3
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Survey (NHANES).

The specification considered follows the standard setup described in the paper. Namely, for latent

physical health (p) and sadness (m) variables Y7 and Y, respectively, we have

Y; = 2Bt wpyYp+&p

with common row of covariates x and exclusive covariates w, and w,, in those two processes.
The discrete dependent variable for health we use takes three values: 0, 1, and 2. The value
0 represents a self-reported “State of health” as “fair”, “poor”, or “very poor”. The value 1
represents a report of “good”, and the value 2 a report of “very good”. The dependent variable
for happiness again takes values 0, 1, and 2. In this case, a value of 0 represents a self-reported
“Feeling of happiness” as “very happy”. A value of 1 represents a reporting of “quite happy”,
and a value of 2 a reporting of either “not very happy” or “not at all happy”. It is coded so that

higher values reflect lower self-reported happiness.

The common set of regressors x includes the variabless: male, white, a college education dummy,
age, regional dummies, and 5 dummies for income brackets. The 5 income brackets are: (1) less
than $20,00; (2) between $20,000 and $35,000; (3) between $35,000 and $50,000; (4) between
$50,000 and $ 75,000; and (5) greater than $100,000. We include no excluded health regressors, so
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FIGURE 7: Estimates from Lattice Bivariate Probit: Health and Happiness
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that w, = 0, but include dummies for employment status and living with a partner as excluded

happiness regressors, w,,.

The coefficients from the lattice bivariate ordered probit regression are provided in Table 3. The
signs of the regression coefficients are as expected. Positive partial effects on the probability
of better health (above a certain level) are given by variables that include dummies for white
ethnicity and college education, and higher income brackets. The variables that positively affect
the probability of higher happiness (or, equivalently, lower sadness) include living with a partner
and higher income brackets. The effect of employment status on the probability of a higher

happiness appears negative but is not statistically significant.

The estimated value of the correlation between the two model errors is negative, which is consis-
tent with our expectations that shocks that increase health would tend to decrease sadness and
shocks that decrease health would tend to increase sadness. The thresholds produced are shown

in Figure 7.

24



TABLE 3: Estimation Coefficients: Health and Happiness

Dependent Variable: Health

WHITE 0.1874 (0.0435)
MALE 0.1503 (0.05515
WHITE X MALE -0.2292 (0.0612)
COLLEGE DEGREE 0.2019 (0.0297)
EMPLOYED 0.2096 (0.0267)
AGE -0.0091 (0.0008)
INCOME 2 0.2803 (.04256)
INCOME 3 0.4164 (.0423)
INCOME 4 0.5904 (.04482)
INCOME 5 0.6241 (.0510)

Dependent Variable: Sadness

WHITE -0.0706 (0.0460)
MALE -0.0310 (0.0582)
WHITE X MALE 0.1480

0.0642)
)

(
COLLEGE DEGREE 0.0332 (0.0302

EMPLOYED 0.0176 (0.02279)
AGE -0.0017 (0.0008)
INCOME 2 -0.0863 (0.0442)
INCOME 3 -0.2384 (0.0444)
INCOME 4 -0.3464 (0.0471)
INCOME 5 -0.4734 (0.0535)
WITH PARTNER -0.3028 (0.0257)
P) ~0.3814 (0.1266)
N 9110

Notes: This table reports coefficient estimates from the health and happiness
specification. Standard errors (reported in parentheses) are Huber/White
sandwich estimates.

7 Conclusion

We formulate lattice ordered response models for narrow bracketing environments, identifying
parameters, thresholds, and the joint c.d.f. in a semiparametric framework. In the bivariate probit

) using marginal probabilities, and p using

parametric case, we separately identify §; and ozg.j
joint probabilities with an exclusive covariate. The lattice structure simplifies estimation, which
is suitable for empirical applications. Future work could further develop estimation methods and

approach identification with heteroskedastic errors.
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Appendix

Proof of Theorem 1. Fix dimension d, d = 1,..., D, for which the condition of this theorem
holds. Because of the lattice structure and Assumption 1 we have for any z, € A},

J

PO <y |wa) = Fy (ol = 2aba) . j =1, My (9)

Take 7 < My — 1 that satisfies conditions of this theorem for this d.

Assumption 2 guarantees that P(Y < y](-d)|xd) will not be degenerate for x4 € S (in the
sense that it will not take values 0 or 1 only). Relation (9) is the basis of the identification

strategy. Strict monotonicity of c.d.f. F; automatically gives us that for two z4.24 € S\%J),
P(Ye < y§d) | Zq) > P(Y < y](-d) | z4) for some j <= Z404 < x4

Thus, the identification is similar to the one in single-index models with a monotone link function
(e.g. see Manski (1988) for the statistical independence case or Manski (1985) (Lemma 2) for
the proof under large support). Notice that we do not need a large support condition for this

result.

Note that the sign of 5, can be identified from varying xq; within the interval (z,,,%41) for
Tg—1 € Sk i P(Ye < y§d) | x4) strictly decreases (increases) when x4 increases within that
interval, then ;1 > 0 (841 < 0). If it does not change then B4; = 0 but this case was ruled by
the conditions of the theorem. For concreteness suppose 351 > 0. Then normalize it as 351 = 1

to fix the scale.

Take by # (4 (both are normalized in the same way so bs; = 1 and (41 = 1). The conditions
of the theorem imply that there exists a positive measure of 2§ _, € 59 such that Ty o1 #
$27,1b—1- Without a loss of generality suppose that for a positive measure of such mgvfl, we have
2y -1 > x)_,b_y. For any zj, that complements 2 _; to a point in S(@) we clearly have

0 0 0 0 0 =
Tgy+Tg 1 B1 >+ b1 We can take 2y, € (24, Ta1).

Due to the continuity of the regressor x4; on (24,,%4,1), one can find ;%371 slightly different from

g, such that (75,25 ) € S(@5) and

*) (%)
0 0 ~0 0 0 0
xd71 + $d7—15d7—1 > xd71 + ajd,_lﬁd,—l > ':Cd,l + zd’_lbd7_1.
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If b and /5 were both consistent with the observables, we would have from (*) that

c d c d ~
P(ver <yl (@l ah ) < P (Y <yl (@0050) (10)

and from inequality (**) that

C d ~ C, d
P <Y ¢ < ?J]( ) | (Ig,bxg,—l)) <P (Y ¢ < ?Jj( ) | (xg,hx(c)l,—l)) . (11)

Inequalities (10) and (11) give a contradiction for the probability on the left-hand side of (10).
This contradiction is obtained for a positive measure of (zj,,25 ;). This implies that Sy is
identified relative to b;. B

Proof of Theorem 2. Fix a dimension d, d =1, ..., D, for which the condition of this theorem
holds. Also fix j = 1,..., My — 2. Then for x4 € S%) and i; € S@+) such that P(Y% <
yj(d) |z4) = P(Y < yﬁ)l | Z4) we have

Fy <a§-d) - l’dﬁd) = Fy <Oé§i)1 - idﬁd) € (0,1).

Using the convexity of the support of €; in Assumption 1 and, thus, strict monotonicity of Fy in

the interior, we conclude right away that agﬂ?l — a§-d) = Tq04— xqPq. Since [y is already identified

(d)

by Theorem 1, we immediately conclude that a;/; — aéd) is identified for any j =1,..., My — 2.

Proof of Theorem 3. (i) Using the result of Theorem 2, we conclude that in this case all

the thresholds oz§d), J =1,...,M; — 1 become known. Then all the underlying components

o\ — 248,. From condition (1), we conclude that known aj(»d)

; — 1404 cover the whole support of
eq (potentially with the choice of different j). Hence, known Fy(«

éd) —x4f4q) for known ag-d) —x4f4

identify the marginal c.d.f Fj.

(ii) If Fy(epq) = coq, this allows us to find aéd) = x484 + €oq in the expression where Fd(oz;d) -

a'? ) = coq- Once one agd)

: is known, we proceed as in (i). B

Proof of Theorem 4. Consider

P (Y(” <yl YD < y§f)|f’3> = Flog, —x1fy,....af) —2pfp).

For any given value py € (0,1) of this observed probability, we want to pin down the whole
D)
D

(D — 1)-dimensional surface of values aﬁ) — x5, ... ,ozg- xpfp that produce this value.

30



Let us identify the pre-image of c.d.f. Fi, for any py. Take any value of x; such that
P (Y(l) < yﬁ)’ﬂﬂl) = Do > po-

Now we operate with processes that do have exclusive covariates. Start by varying exclusive
covariate x9 ;. By the conditions of this theorem, by changing x,; alone we can force the choice
probability
1 2
P <Y(l) < yjﬁl))7y(2) < y§2))‘$1,1’2)

to vary from 0 to py. We will consider only that variation that makes this probability py. This
will identify the pre-image of the c.d.f Fi5 corresponding to py. By taking py arbitrary in (0, 1)
we effectively identify the joint c.d.f Fis.

Let us identify the pre-image of Fjs3 for any pg. Take any value of x; and x5 such that
P (Y(” <y Y® < y§§)|x1,$2> = fo > po.

Now vary the exclusive covariate x3;. By the conditions of this theorem, by changing x3; and

we can force the choice probability

P(Y® <y, v® <y@) v <y, w5, 4)

to vary from 0 to pg. We pick only those directions that make this probability py. This will
identify the pre-image of the c.d.f Fjo3 corresponding to py. By taking pg arbitrary in (0, 1) we
effectively identify the joint c.d.f Fio3.

Proceeding sequentially in this manner, we identify the overall joint c.d.f. . B

Proof of Theorem 5. Using the lattice assumption, P(Y (@ < y](d) | z4) = <I>(oz(.d) -
14834). Apply @' to observed conditional probabilities to obtain linear equations of the form
o! (P(Y<d> <\ xd)> = o\ — 2484. With kg + 1 distinct x4 points and full rank the linear

system identifies ag.d), j=1,...,M;—1,and 5, R

Proof of Theorem 6. (a) Since P(Y* < y§f1)|x§1) = (aéih) -y 5d1>, the condition of this
(@)

J1

in the d;-th process, and extract x;, from z*. If we can find j, such that aggz) —xy,B4, <0, then

part means that a; "' —xj B4, = 0. Find the whole vector z* that has z; as a vector of covariates
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we consider the observed probability

(d2) _
. 71’(1 Bdg 1 2
P (Y(d” <y, YR <y |x217x22> = / s —c 70 ——pdl’dz n | dn.
o V2 1—p2 .
Because agf) — 2, B4, < 0, the right-hand side is strictly increasing in lpdl—‘jz and everything
VT Pddy

Pdy,doy Pdq,doy

else on the right-hand side is known. Therefore, ——222— is identified. Since ——2£2— in its turn
& V l_p?ll«dz V l_pgladz

is a strictly increasing function of pg, 4, € (—1,1), this guarantees that identification of pg, 4,

If ozg-;h) — 23,81, < 0 for any j», then instead we would consider the probability

P (Y(dl) < y](fl), y(d2) > y](;m |x21,x22) and conduct an analogous identification strategy.

) )

— T4, 34, have the same sign and the
)

(b) The first inequality implies that a§1212 — X4, B4, and ozSSZ

second inequality implies that this sign is opposite to the sign of agz — 23, 84,- For concreteness

suppose that the first two expressions are positive and the third one is negative.

)

The third inequality implies that « — X4, B4, have different signs. Without

(@)
J1

(d1) (da
= Zay Pa, and a

J
dy)

a loss of generality, o'/ — x4, 84, > 0 and ozj(l — Zq,Ba, < 0.

Consider
+00 1 2 a(.dl) — 24, Ba;, —
P (Y(d1) < y(dl) Y(d2) > y(dQ) |$> — / 67%(1) J1 d1Pdy Pdy,dx"] d77
— Jn 0 J2 )
a;;l2)_xd2ﬁd2 v 2T /1 — pgl,dQ
where the only unknown on the right-hand side is pg, 4, and —\/f“—%ﬂ is strictly decreasing
~Pdy,d
a8 s, .
in pg, 4,. Since 045»(111) — x4, B4, > 00, then “1—21 as a function of pg, 4, is decreasing on the
_pdlvdZ

interval (—1,0]. Hence, the whole right-hand of this probability expression is strictly decreasing
in pg, 4, on the interval (—1,0]. Thus, among non-positive pg, 4,, there can be at most one value

that can generate observable left-hand side.

Consider

d ~
) B /+OO 1 772 a‘g‘ll) - xdlﬁ(h - Pd1,d277
«

p (Y(dl) < y(-dl), y(d2) < y](d2) E

J1 2

e 20

(dy) ~ /
j22 —Zd, Bdy 27 W1 = p§1’d2

— Zq, B4, < 0, then the right-hand side of the last equation is strictly decreasing in

dn,

: (d1)
Since o,
Pdy.a, on the interval [0,1). Hence, among non-negative pg, 4,, there can be at most one value

that can generate observables.
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Thus, at this stage of the proof there can be at most two values (one non-negative and one

non-positive) in the identified set. Let us denote these two candidate values as pj 4, < 0 and
ﬁd1,d2 > 0.
Now consider

(42)_o @) on
P (Y(dl) S yj(ill),y(dQ) S y§j2) ‘I’O> _ /O‘JQ deBdQ 1 e_é@ ijl wdlﬁdl Pdy,d2] d?’].lo

e 27 Y 1= p317d2

Since ag-;h) — xy,B4, <0, the equation

(d2) _

a de 1 2
P <Y(d1) < )y < ) |x<>) - / " \/%6_%@ (b— an)dn

considered for all observationally equivalent (a,b), delivers a strictly decreasing in a function

b(a) that generates the same P <Y(d1) < yﬁl), y(d) < y |x ) It is easy to see that for both

d _ (dl)_ o B
Py d Yo ~Tay Py ~ pdy ,d = Qo TTayPdy

af = L <0 b =-1—_ <0anda = L2 >, b= -1
\ll_pdl,dQ

x 2 -2 ~2
V 1=Pa; a, V 1=Pa, 4, V 1=Pd, a,

compatible with the fact that they belong long to the curve (a,b(a)) with the strictly decreasing

< 0 to be

b(-), it has to be satisfied that |pa, 4,| > [0}, 4, |-

Going back to  note that since aj(»fl) — :”55121)50!1 < 0, the equation

(d1) _~

@, -z Bd 1 2
(d1) < o, (d1) y(do) ~, (d2) =) _ 1 dq Pdy 2 B
P (Y >V Y > Y, | 37) . me PRE0)) (b an) dn

considered for all observationally equivalent (a,b), delivers a strictly decreasing in a function

b(a) that generates the same P (Y(dl) < yj(fl), y(d) < y](-jZ) ]f) It is easy to see that for both

* (d1)_~ ~ ( )
at = Pdy dy < 0. b = ajll —Zay Pay > 0and @ = Pd1 dy > 0 B V%4, Bay

2 = 2 2
\V l_p:!lde V l_pzl,dz \/ TPy ,dy Y% 1 pdl dg

compatible with the fact that they belong long to the curve (a,b(a)) with the strictly decreasing

> 0 to be

b(-), it has to be satisfied that |pg, a,| < |0}, 4,|- This is a contradiction with the previous

conclusion. Therefore, only one of pj , and pg, 4, can generate observables.

1 2
( ) DenOte I‘( ) ('/L‘Ell)l :L1» xdl)Ldl +1: kd ) a’nd x( ) (xél)l Ly xdl:Ldl+1 kdl)

We first consider the case when oz(dl) — xdl)ﬁdl and a x&?ﬁdl take different signs — e.g.
suppose that 045»1 D _ Ty, )5d1 > 0 and a d1 ﬂdl <0.
10The reason we consider Y (42) < yj(jﬁ is because ag-;iQ) — 5,84, <O0.
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For indices j; and j, in condition in (c¢), consider the probability

(d1) __(2)
Jll xdlﬁdl 1

—o V2T

2
P <Y”1 <y yee <yl ) xdz) = ™7 ® (b— an)dy, (12)

Pdy dy Ty Pz (.dl) xdl)ﬁdl < 0, the right-hand side of (12)

where @ = ——L2—, b = 2——=—. Because a;,
\/ 1_pd1,d2 \V 1_pd1,d2

is strictly increasing in a. It is obviously also strictly increasing in b. This means that for any

feasible a € R we can find by(a) such that

(d1) _(2)
711 xdl /Bdl 1 2

n
e
oo V2T

~ 7 ® (by(a) — an) dn,
and bs(+) is a strictly decreasing function. Now consider the probability

P (Ym < y(dl) ye < yj ’xd1 733d2) =

oo 1 n’
e 2d (b - 6“7) dna

P (v >y v <y 12, a0,) :/
J1 J2 dy a2 a§;l1)_$;1l)ﬂd1 \ 27

where a and b are the same as in (12). Because &g-ih) - zfill)ﬁdl > 0, the right-hand side of the
last expression is strictly decreasing in a. It is obviously also strictly increasing in b. This means
that for any feasible a € R we can find b, (a) such that

+oo
]_ 7]2

P(Ycl> ) ye < 2 x>:/ e ® (b (a) — an) dn.

y]l y] ’ d1 do a;llil)—xglll)ﬁdl \/% (1( ) 77) n

Note that since we only vary the first L, covariates in x4, which are excluded from x4,, then
oz?j — 4,04, does not vary. This implies that pg, 4, is identified because the strictly increasing by (+)

and the strictly decreasing by(+) can intersect only once and the argument at that intersection is

Pdy,do

_ 2
1 Py dg

at , which can be inverted to give pg, 4,-

dy)

We now consider the case when both oz§1 —x((ill) B4, and oc;lll —x((fl) Ba, have the same sign. Suppose

that they are both non-positive.!! Without a loss of generality,

P (Yc1 < y(dl) ye2 < y(d2 |md 7xd2> > P <Y(d1) y(dl) Y(d2) < (d2 |J] xd2> '

i1 =

UTf they are both non-negative, then instead of considering the conditional probabilities of {Y1 < yj(-fl), Y <
yj(jz)} we would consider the conditional probabilities of {Y ¢ > yﬁfl), Ye < y§jz)}.
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FIGURE 8: Functions by(-) (solid line) and by(-) (dotted line)
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Then both level functions bs(-) and b;(+) defined by equations

(d1) _ (2)
ajll 7xd1 ﬁdl 1 2

o V2T

P (Ycl <yl ye < yj(-?) ]:1:221),1:@) =

J1

and

(d1) _ (1)
ajll 7$d1 Bdl 1 2

i me’%q) (ba(a) — an)dn

P (Yo <o v <y [0 a,) =

are strictly decreasing. However, the function b;(a) has a derivative that is strictly greater than

the derivative of by(a) for all a in the intersection of feasible sets. Moreover, for all low enough

common feasible a the values of b;(a) are lower than the values of by(a) and for all high enough

a the values of b;(a) are higher than the values of by(a). This situation is illustrated in Figure 8.

Together with the strict inequality on the derivatives of these functions, these properties imply

that these two functions may intersect only once. Their intersection is at —24u2

be inverted to give pg, 4,- W
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