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1 Introduction

This paper examines ordered discrete response models in which individuals make simultaneous

decisions across multiple categorical dimensions, each with a meaningful ordering. A natural

way to extend univariate ordered response models to these multivariate contexts – and the

one adopted by most empirical work – is to define latent utilities and threshold decision rules

for each dimension. However, such extensions, while intuitive, often oversimplify the decision-

making process by assuming complete functional independence of threshold decision structures

across dimensions, as illustrated in the left panel in Figure 1.1 From a behavioral economics

perspective, these models align with agents exhibiting narrow bracketing, prioritizing simpler

choice rules over joint utility optimization. The structure of these models reveals that threshold

intersections across dimensions create a lattice in multidimensional space, once again illustrated

in the left panel in Figure 1, prompting us to term them lattice models.2

Latent Utility 1

Latent Utility 2

Latent Utility 1

Latent Utility 2

Figure 1: Models with a lattice (left) and a non-lattice (right) structure

We introduce and explore a comprehensive class of models for selecting ordered categories across

multiple dimensions. These models retain familiar features of ordered response models, such as

(a) reliance on latent utilities for each dimension, as in lattice models, and (b) threshold-based

decision rules. However, the models innovate by allowing thresholds across dimensions to be

functionally interdependent. This flexibility enables our models to capture more complex and

nuanced economic behavior compared to lattice models.

Drawing on behavioral economics, our framework accommodates broad bracketing as a general

1In an auction context, this assumption is akin to suggesting that a firm bidding in two simultaneous auc-
tions for complementary objects would employ functionally independent equilibrium strategies in each, a notion
contradicted by auction theory literature. See discussion in Gentry et al. (2023) and Gentry et al. (2019) for more
detail.

2This is the term we use ourselves for this model, it is not a commonly accepted terminology
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case, while encompassing narrow bracketing as a special case, since lattice models are nested

within our broader class. Like lattice models, we focus on a single economic agent making si-

multaneous decisions across multiple dimensions. In other words, different dimensions will not

represent different economic agents interacting strategically, This does not mean that our setting

is completely irrelevant to to game-theoretical contexts. For instance, drawing on the auction

analogy from above, our decision structure determined ex-ante can represent a single bidder’s

equilibrium strategies across multiple auctions.

The right panel in Figure 1 illustrates the models we propose. We refer to them as models with

general rectangular structures. Sometimes to distinguish them from lattice models and to signify

the fact that intersections of thresholds across dimensions no longer form a lattice, we may refer

to them as non-lattice models.3

Models with general rectangular structures pose both theoretical and practical challenges. On

the theoretical side, understanding economic behavior of agents making decisions and estimating

latent utility parameters or their joint dependence requires disentangling two distinct elements:

the functional dependence of decision thresholds and the interdependence of latent utilities across

dimensions, conditional on observables. On the practical side, one must impose restrictions on

the thresholds to ensure the internal coherence of the decision structure (a concept we formalize

later) and estimate a greater number of parameters from the data.

While these challenges are nontrivial, they come with significant rewards, as models with gen-

eral rectangular structures allow us to more accurately uncover the true decision structure and

identify the underlying economic primitives.

Specifically, general rectangular structures come with two key advantages over existing mul-

tivariate ordered choice models. First, non-lattice models permit richer forms of interaction

across dimensions by allowing two distinct layers of complementarity or substitutability. For in-

stance, the threshold decision rule might display substitutability, while the dependence structure

of unobservables in the latent utilities might reflect complementarities. Furthermore, within the

threshold decision structure itself, patterns of complementarity or substitutability can vary across

different regions of the latent utility space. Our application to health insurance exploits this fea-

ture of two distinct layers of complementarity/substitutability to disentangle moral hazard from

advantageous/adverse selection.

3When using the term non-lattice, one has to keep in mind that lattice models are a special case of such
models.
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Second, lattice models force the sign of any partial effect on the conditional probability of exceed-

ing a given level in one dimension to be constant across the domain (for which we will provide

a concrete example in the text). By contrast, models with general rectangular structures allow

these partial effects to change sign, capturing more nuanced and flexible behavioral patterns.

Lattice models also restrict the conditional probability of exceeding a given level in one dimen-

sion (given all covariates across processes) from depending on covariates that do not belong to

its own latent process. Models with general rectangular structures relax this restriction, allowing

indirect effects from other covariates. For instance, a price subsidy meant to encourage health

insurance enrollment can indirectly influence the probability of exceeding a given level in the

pension plan dimension.

After reviewing the related work and situating our contribution within the broader literature,

we begin our analysis in Section 3. There, we formally define models with general rectangular

structures (which we sometimes refer to as non-lattice models), lattice models4, and develop

our concept of coherency. In Section 4 we provide two microfoundations for general rectangular

structures. The first includes explicit synergies/crowding out effects in the joint utility specifi-

cation. The second microfounds general rectangular models as the outcome from discretizing a

continuous joint utility maximization problem.

Section 5 develops a semiparametric specification of multivariate ordered response models with

general rectangular structures and examines their properties in detail. In particular, Section 5.1

highlights how these models capture richer economic behavior than lattice models, focusing on the

more flexible patterns of partial effects discussed above. Section 5.2 then turns to identification.

We proceed step by step, starting from the parameters associated with exclusive covariates

and ending with the identification of thresholds, which is more involved. The analysis assumes

independence between unobservables and covariates, and that each process includes at least one

exclusive covariate with a meaningful effect. Section 5.3 discusses possible estimation approaches

for semiparametric models with general rectangular structures. The main method builds on

Coppejans (2007) subject to coherency constraints expressed as equalities involving thresholds,

though we do not provide formal inference results.

Section 6 focuses on the parametric case, where the joint distribution of unobservables is as-

sumed to follow a multivariate normal distribution. We illustrate identification under much less

4For clarity, we emphasize that our non-lattice models encompass lattice models as a special case, even though
the terminology might suggest otherwise.
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stringent assumptions than in the semiparamatric case through a numerical exercise using a bi-

variate modelm and discuss estimation via maximum likelihood, subject to the same coherency

constraints.

Section 7 presents Monte Carlo simulations assessing the performance of the proposed non-

lattice probit estimator under normal errors, compared with the standard bivariate ordered

probit estimators which effectively estimates a mis-specified lattice model.

Section 8 contains applications. The first explores the relationship between cryptocurrency fa-

miliarity and optimism. It shows how the non-lattice approach helps uncover differences in how

individuals form and express opinions about bitcoin’s value obscured by the lattice model. The

second application concerns insurance markets, where we show how the non-lattice model can

disentangle moral hazard from selection (adverse or advantageous) by allowing functionally de-

pendent thresholds that capture moral hazard in a coherent and data-driven way leaving selection

to be fully captured by correlation of unobservables.

Section 9 concludes and the online supplement contains more details on coherency and proofs of

all formal results.

2 Our contributions and literature review

Our paper contributes to the literature on the economic foundations of ordered choice models

by extending the analysis from univariate to multivariate decision problems. We study an agent

making several ordered choices whose decisions interact through functionally dependent fixed

thresholds across dimensions. Most existing work focuses on univariate models. For example,

Cunha et al. (2007) develop a “generalized ordered choice” model with thresholds that depend

on observables and unobservables, showing how this framework captures a wide range of eco-

nomic settings, including dynamic ones such as schooling decisions. Earlier contributions include

Cameron and Heckman (1998), Heckman et al. (1999), Carneiro et al. (2003), and Lewbel (2003),

who study ordered models with random or sequentially determined thresholds.

In contrast, our model allows for complex interactions across multiple ordered dimensions while

maintaining fixed thresholds. Here, thresholds depend on the realizations of other endogenous

variables rather than regressors or unobservables, requiring a joint model of all endogenous

processes. This extension offers a more flexible structure on thresholds than the one implied by
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fixed thresholds and univariate stochastic thresholds determined by regressors and errors.

From a more foundational point of view, two main approaches have emerged in the literature

on univariate threshold-based ordered response models. One treats thresholds as reduced-form

tools that aid estimation but have limited behavioral interpretation (e.g., Greene and Hensher

(2010) and Boes and Winkelmann (2006)). For example, Greene and Hensher (2010) notes that

thresholds may capture psychological attitudes with “bunched” cut points suggesting strong

preferences, and dispersed ones reflecting indifference. In economic contexts like schooling or

job satisfaction, thresholds are often viewed as cost-benefit barriers, though this link is typi-

cally conceptual rather than derived from optimization. Anderson (1984) extends this idea with

“stereotype” ordered regressions, where thresholds relate to category proportions rather than

absolute utility levels.5

A second strand grounds thresholds in explicit optimization problems, offering clearer microfoun-

dations. For instance, Bhat and Pulugurta (1998) derive thresholds from a range-based utility

model, while Apesteguia and Ballester (2023) propose type-ordered random utility models, where

ordered choices arise from heterogeneous preference types without restrictive distributional as-

sumptions. Structural approaches such as Cunha et al. (2007) also belong to this line of work,

though none extend to multivariate settings.

Our paper takes a first step toward microfoundations for multivariate ordered response models

with general rectangular structures. Section 4 presents two approaches. The first, illustrated with

a bivariate example, interprets higher discrete responses as bundles of lower outcomes that may

be complements or substitutes, depending on latent utilities and thresholds. The second charac-

terizes marginal utilities along each dimension and shows that a rectangular structure naturally

arises as the optimal discrete response satisfying discrete analogues of first-order conditions.

Together, these provide a foundation for understanding multivariate ordered decision-making.

Another related line of research concerns choice bracketing also referred to as sequential vs. simul-

taneous choice (Simonson and Winer, 1992), narrow vs. broad decision frames (Kahneman and

Lovallo, 1993), local vs. overall value functions (Heyman, 1996), and isolated vs. distributed choice

(Herrnstein and Prelec, 1991). This literature is largely theoretical and experimental (Tversky

and Kahneman, 1981; Read et al., 1999; Thaler, 1999; Rabin and Weizsäcker, 2009; Lian, 2020;

Camara, 2021; Zhang, 2021), with only a few descriptive or structural empirical studies (Camerer,

5In the Anderson (1984) model, ordinal categories are not tied to a single latent variable with fixed thresholds.
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Babcock, Loewenstein, and Thaler, 1997; Thakral and Tô, 2021).6 To date, econometric work

has not explicitly modeled narrow versus broad bracketing behavior. Our framework of general

rectangular structures offers a natural way to do so with lattice models corresponding to nar-

row bracketing and the broader rectangular structure capturing broad bracketing decisions. This

setup also enables formal testing for broad bracketing by examining whether thresholds in the

latent space conform to a lattice structure.

A tangentially related literature is the discrete choice framework with strategic interactions,

where outcomes for one player depend on the actions of others (Tamer, 2003; Berry and Reiss,

2007; Ciliberto and Tamer, 2009; Honore and De Paula, 2010; Chesher and Rosen, 2017, 2020;

Aradillas-López and Rosen, 2022). In these models, each agent represents a distinct dimension,

and best responses can lead to incoherent or incomplete outcomes. In contrast, our paper focuses

on a single economic agent making decisions along multiple dimensions. For such an agent, the

decision problem is internally consistent by construction, and therefore models with general

rectangular structures are coherent. As we detail in the following section, by coherency we mean

logical consistency in decision-making that ensures that rectangular regions representing different

discrete responses do not overlap and together cover the entire latent space RD.7

3 Model with a general rectangular structure

We formally define general rectangular structures and lattice multivariate ordered response mod-

els for an agent making decisions across D ≥ 2 dimensions. These models map a D-variate latent

continuous metric (Y ∗c1 , . . . , Y ∗cD) to a discrete metric (Y c1 , . . . , Y cD), with ordered responses

in dimension d denoted as y
(d)
j , j = 1, . . . ,Md, and satisfying y

(d)
1 < · · · < y

(d)
Md

.

Definition 1 (General rectangular structure model) A model has a general rectangular

structure (or sometimes we refer to it as a non-lattice model) if

(Y c1 , . . . , Y cD) = (y
(1)
j1
, . . . , y

(D)
jD

) ⇐⇒ (Y ∗c1 , . . . , Y ∗cD) ∈ Rj1,...,jD , where

6Tversky and Kahneman (1981) provides a classic example of narrow bracketing in experimental settings.
7For more on coherency, see Heckman (1978) and Tamer (2003). Tamer (2003) distinguish between incoherency

and incompleteness in games with strategic interactions, a distinction followed by later studies. In our setting,
we use the term “coherency” to refer more generally to overall logical consistency.
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Rj1,...,jD =
D×

d=1

(
α
(d)
j1,...,jd−1,jd − 1,jd+1,...,jD

, α
(d)
j1,...,jd−1,jd,jd+1,...,jD

]
, (1)

with thresholds α
(d)
j1,...,jd−1,jd,jd+1,...,jD

increasing in jd for given other indices and normalized at the

boundary as

α
(d)
j1,...,jd,...,jD

= +∞ for jd = Md, α
(d)
j1,...,jd,...,jD

= −∞ for jd = 0.

Threshold intersections in Definition 1 do not necessarily form a lattice in RD, reflecting func-

tionally interdependent decision rules, akin to broad bracketing in behavioral economics.

Definition 2 (Lattice model) A lattice model is a special case of a general rectangular struc-

ture (non-lattice) model in which each threshold α
(d)
j1,...,jd,...,jD

depends only on the index in its own

dimension:

(Y c1 , . . . , Y cD) = (y
(1)
j1
, . . . , y

(D)
jD

) ⇐⇒ Y ∗cd ∈
(
α
(d)
jd−1, α

(d)
jd

]
∀d, with

α
(d)
jd

= +∞ for jd = Md, α
(d)
jd

= −∞ for jd = 0.

Here, thresholds are functionally independent across dimensions, forming a lattice in RD in

their intersections. Lattice models correspond to a decision maker who narrowly brackets, since

decisions can now be seen as made dimension-by-dimension, as opposed to jointly. Lattice models

will misspecify a decision maker who broadly brackets.

Thus, the distinction between broad and narrow bracketing is fully captured by functional in-

terdependence or independence of decision rules, determined by the thresholds. Both lattice and

non-lattice models permit correlated decisions through latent processes, but the latter distinguish

correlation in unobservables from interdependent decision rules.

Coherency The flexibility of general rectangular structure models is achieved by allowing

thresholds for each dimension to depend on the full vector of response indices. But this comes at

a cost, as Definition 1 does not guarantee that the division of latent space into regions Rj1,...,jD is

to be exhaustive or mutually exclusive. As a result, the condition that each latent profile maps to

exactly one observed response (which is to us is associated with logical consistency in decision-

making) and to which we refer to as coherency is not satisfied by Definition 1 construction.
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Figure 2: Intuition for a non-lattice model being coherent when D = 2

Since the model aims to describe the behavior of a logically consistent decision-maker, it should

always satisfy coherency, especially when we take it to the data. In general rectangular structure

models ensuring this requires explicit constraints on the thresholds. Lattice models, by contrast,

are coherent by construction.

We now examine coherency in a bivariate general rectangular structure ordered response model,

providing a formal condition on thresholds for the model to be coherent. The characterization

of coherency for D > 2 is more involved and is given in the online supplement.

Proposition 1 (Coherency for D = 2) Consider a bivariate general rectangular structure or-

dered response model, defined by a set of thresholds
{
α
(1)
j1,j2

, α
(2)
j1,j2

}M1−1,M2−1

j1=1,j2=1
.

Given thresholds normalizations at the boundary, the model is coherent – i.e., the latent space is

partitioned into mutually exclusive and exhaustive rectangular regions Rj1,j2 = (α
(1)
j1−1,j2

, α
(1)
j1,j2

]×
(α

(2)
j1,j2−1, α

(2)
j1,j2

] each corresponding to a unique observed outcome – if and only if, for all (j1, j2),(
α
(1)
j1+1,j2

− α
(1)
j1,j2

)
·
(
α
(2)
j1,j2+1 − α

(2)
j1,j2

)
= 0. (2)

In other words, for the model to be coherent, the thresholds must satisfy a local condition for each

2× 2 block of adjacent cells. Specifically, within each block, at least one of the dimensions must

have constant thresholds across that block. This requirement prevents ambiguity in decision-

making by ensuring that when an agent faces a choice within a 2 × 2 block, they make their

decision sequentially: first along one dimension, where the thresholds remain fixed, and then

along the other dimension. An illustration of a local problem and the coherency requirement is

given in Figure 2. Thus, in every local decision problem one dimension is leading and the leading

dimension may be different across different parts of the domain (e.g., when one considers health

insurance levels vs retirement contribution level, it may very well be the case that for lower levels
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(1, 1) (2, 1)

(1, 2) (2, 2)

Y ∗c1

Y ∗c2

(1, 1) (2, 1)

(1, 2) (2, 2)

Y ∗c1

Y ∗c2

Figure 3: Illustration in the bivariate case with two discrete options in each dimension

the insurance decision is the leading one whereas for higher levels of both the leading decision

is the retirement contributions as at those levels long-run financial planning may be of more

relevance).

4 Microfoundations

There are several ways to approach a general rectangular structure model from a microeconomic

foundations perspective. We propose two such approaches.

The first approach directly models complementarities and substitutabilities in the joint utility

across different pairings of options. We illustrate how it can be done in a simple bivariate model

with two discrete options (1 and 2) in each dimension. The left panel in Figure 3 shows sub-

stitutability in the decision structure reflected in the larger threshold in the second dimension

when Y c1 = 1. It shows that choosing a higher level in dimension 1 makes it harder to choose

a higher level in the other, often due to resource constraints. The right panel in Figure 3 shows

complementarity as choosing a higher level in dimension 1 facilitates a higher level in the other

dimension.

Consider the following utilities across four pairs of discrete choices: for constant v < 0,

U(1, 1) = 0, U(2, 1) = Y ∗c1 , U(1, 2) = Y ∗c2 ,

U(2, 2) = D(Y ∗c1 + Y ∗c2 − v) + (1−D)(Y ∗c1 + Y ∗c2), (3)

whereD = 1(Y ∗c1 > 0)1(Y ∗c2 > v). Then the argmaxj1,j2U(j1, j2) is (i) (1,1) when Y ∗c1 , Y ∗c2 ≤ 0;

(ii) (1, 2) when Y ∗c1 ≤ 0, Y ∗c2 > 0; (iii) (2,1) when Y ∗c1 > 0, Y ∗c2 ≤ v; and (iv) (2,2) when

Y ∗c1 > 0, Y ∗c2 > v. The lower threshold v < 0 facilitates choosing Y c2 = 2 when Y c1 = 2,
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suggesting complementarity (as in the right panel in Figure 3). The utility boost−v > 0 in U(2, 2)

when D = 1 acts like a synergy term, incentivizing (2,2) over (2,1) or (1,2) when propensities

are sufficient. This reflects scenarios where choosing one high option reduces the marginal cost

of the other (e.g., economies of scale, subsidies).

To obtain substitutes in the decision structure (as in the left panel in Figure 3), consider w > 0

and replace U(2, 2) in (3) with the following definition:

U(2, 2) = D(Y ∗c1 + Y ∗c2) + (1−D)(Y ∗c1 + Y ∗c2 − w),

with D defined in the same way as before. The higher threshold for Y ∗c2 when Y c1 = 2 indicates

that choosing Y c1 = 2 raises the level needed for Y c2 = 2, reflecting substitutability. This captures

resource competition (e.g., budget, time) where pursuing one high choice increases the cost of

the other. The penalty −w < 0 when D = 0 reinforces the trade-off. An analogous construct

could be employed for any number of ordered choices in each dimension.

The second approach to providing microeconomic foundations for general rectangular structure

models is to view discrete options as the result of discretizing an underlying continuous space,

whether due to survey design, categorical reasoning, or similar factors. If one had a smooth

function U(y(1), y(2)) of continuous responses (y(1), y(2)) then the global maximum (y(1), y(2))

would have necessarily satisfied ∂U(y(1),y(2))

∂y(1)
= 0, ∂U(y(1),y(2))

∂y(2)
= 0. With the discrete grid (y

(1)
j1
, y

(2)
j2
)

to find a maximum on the grid we have to ensure the function value does not increase when

moving to any neighboring grid points in each coordinate: that is, (y
(1)
j1
, y

(2)
j2
) is the maximizer of

U on the grid only if

U(y
(1)
j1
, y

(2)
j2
)− U(y

(1)
j1−1, y

(2)
j2
) > 0, U(y

(1)
j1+1, y

(2)
j2
)− U(y

(1)
j1
, y

(2)
j2
) ≤ 0, (4)

U(y
(1)
j1
, y

(2)
j2
)− U(y

(1)
j1
, y

(2)
j2−1) > 0, U(y

(1)
j1
, y

(2)
j2+1)− U(y

(1)
j1
, y

(2)
j2
) ≤ 0 (5)

A general rectangular structure model is obtained when for any j1 > 1 and any j2 > 1,

U(y
(1)
j1
, y

(2)
j2
)− U(y

(1)
j1−1, y

(2)
j2
) = Y ∗c1 − α

(1)
j1−1,j2

.

U(y
(1)
j1
, y

(2)
j2
)− U(y

(1)
j1
, y

(2)
j2−1) = Y ∗c2 − α

(2)
j1,j2−1.

These specifications of the utility differences (analogues of marginal utilities) ensure that for any

realization (Y ∗c1 , Y ∗c2) of latent processes, there is only one pair (j1, j2) that satisfies (4)-(5).
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Namely, this is the pair (j1, j2) such that (Y ∗c1 , Y ∗c2) ∈ Rj!,j2 .

5 Semiparametric specification, partial effects, identifica-

tion, estimation

To take our model to the data, we adopt the standard approach in the discrete response literature,

specifying each d-th continuous latent process as a linear index:

Y ∗cd = xdβd + εd, d = 1, . . . , D, (6)

where xd is a row vector of observable covariates, βd is a column vector of unknown parameters,

and εd is an unobservable error term. This structure interprets xdβd as the systematic component

of an agent’s latent propensity to choose an ordered category in dimension d, with εd capturing

random shocks to the latent utility. The errors ε1, . . . , εD may be dependent, allowing latent

processes Y ∗cd to be correlated conditional on covariates. This linear index, standard in discrete

choice models, supports estimation of threshold-based interdependence in general rectangular

structure models while maintaining parsimony. While more general functions of xd could be used

without compromising identifiability, the linear form offers practical simplicity with minimal loss

of flexibility.

Given the complexity of the model, particularly with regard to the two-layer dependence struc-

ture, we should be prepared for fairly stringent requirements on the data to ensure identification

of the following objects of interest : βd, d = 1, ..., D, the joint c.d.f of ε = (ε1, . . . , εD)
′, and the

thresholds. We start by imposing Assumption 1.

Assumption 1 ε = (ε1, . . . , εD)
′ is independent of x = (x1, . . . , xD) and has a convex support

in RD.

Notation 1 For any d = 1, . . . , D, let κd denote either ≤ or > sign. Denote

Fκ1,κ2,...,κD
(t1, ..., tD) = P (∩D

d=1(εd κd td))

for any κd ∈ {≤, >}, d = 1, .., D. Functions F≤,...,≤ and F>,...,> are the joint c.d.f. and the joint

survival function of ε, respectively, and for simplicity we will interchangeably denote them as
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F and F , respectively. All the other cases correspond to hybrid forms of c.d.f.s and survival

functions. Similar notation apply to subsets of dimensions.

Also denote Fd,κd
(td) = P (εd κd td) for κd ∈ {≤, >}. Thus, Fd,≤ is the marginal c.d.f. and Fd,>

is the marginal survival function of εd.

In our related paper, Komarova and Matcham (2025), we outline the increasing degree of re-

strictions required to ensure identification in semiparametric lattice models. There, we discuss

why identification of parameters and thresholds can rely on a weaker version of Assumption 1

– namely, the independence of εd from xd for each d = 1, . . . , D. However, as we argue there,

the identification of the joint distribution of ε does rely on Assumption 1 even in lattice models.

Thus, when one of the objectives is to identify the joint distribution of errors (motivation for

this is discussed later) then our Assumption 1 is no more restrictive than what is required in

lattice models.

5.1 Advantages of non-lattice models over lattice models

Next, we describe how general rectangular structure models offer significant advantages over

lattice models in capturing complex interdependencies between discrete choices, Even in the

simplest possible case of a bivariate model with 2 discrete choices in each dimension we can

talk about at least four different empirical structures. These arise from the interactions between

complementarity or substitutability in decision thresholds (the first layer) and complementarity

or substitutability in unobservables (the second layer), the latter captured through positive or

negative dependence that reflects whether shocks reinforce or offset one another.

In many applications, substitutability/complementarity relationships at each layer may be un-

known a priori and need to be identified from the available data.

Cross-partial effects: Partial effects in one dimension can depend on covariates ex-

clusive to other processes In another aspect, under Assumption 1, models with general

rectangular structures allow the likelihood P (Y cd ≥ y
(d)
j |x) that an individual selects at least

a certain level of commitment in one decision area, given all relevant personal and contextual

factors, depend on covariates exclusive to other processes (e.g., xh, h ̸= d), enabling analysis of

partial effects
∂P (Y cd≥y

(d)
j |x)

∂xh,m
. This effect is indirect – covariates exclusive to processes in other
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dimensions affect the probabilities of decision in a given dimension indirectly through their in-

fluence on latent utilities in other dimensions. In lattice models under Assumption 1 such partial

effects are absent (that is, zero).

Consider, for example, high school students choosing academic effort (Y c1 : low = 1, medium =

2, high = 3) obtained from hours of study and extracurricular activity participation (Y c2 : low =

1, moderate = 2, high = 3) e.g. expressed through involvement in sports or clubs. These choices

are interdependent at the layer of the decision structure with the direction of that interdepen-

dence unknown a priori. Indeed, high academic effort may limit time for extracurriculars, but

at the same time extensive extracurricular involvement may encourage academic effort for col-

lege applications. Covariates exclusive to Y ∗c1 could be parental education and access to tutors,

covariates exclusive to Y ∗c2 could be school resources and peer involvement. Covariates shared

by both Y ∗c1 and Y ∗c2 could be socioeconomic status and school quality. A non-lattice model

would e.g. allow school resources (exclusive to Y ∗c2) affect the probability of high academic ef-

fort. It may show for example that better school resources (such as sports facilities) increase the

probability of high academic effort by motivating students to balance high academic effort for

college admissions. This would be informative for resource allocation policies. A lattice model

would miss that effect.

To illustrate this theoretically, take the model in Figure 4 and note that

P (Y c1 ≤ 1|x) = P (Y c1 ≤ 1, Y c2 = 1|x) + P (Y c1 ≤ 1, Y c2 = 2|x)

= F
(
α
(1)
1,1 − x1β1, α

(2) − x2β2

)
+ F1

(
α
(1)
1,2 − x1β1

)
− F

(
α
(1)
1,2 − x1β1, α

(2) − x2β2

)
With the lattice structure (α

(1)
1,1 = α

(1)
1,2 ), only the middle term in this representation is left.

Therefore, with the lattice stricture, ∂P (Y c1≤1|x)
∂x2,m

= 0, where x2,m is a covariate exclusive to the

process Y ∗c2 . Thus, cross-partial effects are not possible in the lattice model.

With the non-lattice structure,

∂P (Y c1 ≤ 1|x)
∂x2,m

= −β2,m
∂F
(
α
(1)
1,1 − x1β1, α

(2) − x2β2

)
∂e2

+ β2,m
∂F
(
α
(1)
1,2 − x1β1, α

(2) − x2β2

)
∂e2

is not necessarily 0 because of α
(1)
1,1 ̸= α

(1)
1,2. In contrast, under Assumption 1, lattice models

restrict P (Y cd ≥ y
(d)
j |x) = P (Y cd ≥ y

(d)
j |xd), ignoring cross-process effects.
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(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

α
(1)
1,1 α

(1)
2,1

α
(1)
1,2 α

(1)
2,2

Y ∗c1

Y ∗c2

Figure 4: Example of a 3× 2 bivariate model

Partial and cross-partial effects can vary in sign across the domain. Let us first

illustrate this property for cross-partial effects. Using the model in Figure 4 and the formula for
∂P (Y c1≤1|x)

∂x2,m
above, we can see that this partial effect is guaranteed to be positive with a positive

probability (and non-negative a.e.) iff β2,m(α
(1)
1,2 − α

(1)
1,1) > 0. In a completely analogous way,

we can consider ∂P (Y c1≤2|x)
∂x2,m

and obtain this partial effect is guaranteed to be positive with a

positive probability (and non-negative a.e.) iff β2,m(α
(1)
2,2 − α

(1)
2,1) > 0. Since α

(1)
2,2 − α

(1)
2,1 < 0 and

α
(1)
1,2 − α

(1)
1,1 > 0, partial effects ∂P (Y c1≤1|x)

∂x2,m
and ∂P (Y c1≤2|x)

∂x2,m
will have different signs. In contrast,

in lattice models the sign of such cross-partial effect would remain consistent across the whole

domain,

Let us now look at the partial effects with respect to own covariates. If xd.m is exclusive to Y ∗cd ,

then the own partial effect
∂P (Y cd≤y

(d)
j |x)

∂xd,m
will have the same sign in a non-lattice model for any

y
(d)
j , j = 1, . . . ,Md. The situation is different if xd,m is shared with another latent process. Using

our model in Figure 4, suppose x1,m = x2,m2 and obtain that in this case,

∂P (Y c1 ≤ y
(1)
j |x)

∂x1,m
= −β1,m

∂F (α
(1)
j,1 − x1β1, α

(2) − x2β2)

∂e1
− β2,m2

∂F (α
(1)
j,1 − x1β1, α

(2) − x2β2)

∂e2

− β1,mf1(α
(1)
j,2 − x1β1) + β1,m

∂F (α
(1)
j,2 − x1β1, α

(2) − x2β2)

∂e1
+ β2,m2

∂F (α
(1)
j,2 − x1β1, α

(2) − x2β2)

∂e2
.

As an example, consider a special case of independent ε1 and ε2. Then

∂P (Y c1 ≤ y
(1)
j |x)

∂x1,m
= β2,m2f2(α

(2) − x2β2)(F1(α
(1)
j,2 − x1β1)− F1(α

(1)
j,1 − x1β1))

− β1,m(f1(α
(1)
j,1 − x1β1)F2(α

(2) − x2β2)

+ f1(α
(1)
j,2 − x1β1)(1− F2(α

(2) − x2β2))).

If β2,m2(α
(1)
j,2 − α

(1)
j,1 ) and β1,m have the same sign, then we have the difference of either two
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positive or two negative terms. Each of them can potentially dominate the other depending on

the values of indices (and, hence, x1 and x2), thresholds, as well as β1,m and β2,m2 .

The feature of own partial effects with respect to a shared covariate or cross-partial facts not

having the same sign across the domain complicates the identification analysis.

5.2 Identification in the semiparametric model

Next, we establish identification in semiparametric models with non-lattice structures. The

knowledge of index parameters and both layers of dependence – through threshold parame-

ters and the joint c.d.f. – is central to counterfactual analysis and policy design involving joint

outcomes such as household decisions on, say, healthcare and education investments. The double-

layer dependence structure will e.g. determine whether bundled interventions reinforce or crowd

out each other.

The approach used in lattice models in Komarova and Matcham (2025) for the identification of

index parameters and threshold differences relies on the ability to isolate different dimensions

and consider one dimension at a time. This is not going to work here as we cannot isolate dif-

ferent dimensions. E.g., from Figure 4 one can see that P
(
Y (1) ≤ y

(1)
j |x

)
for j = 1, 2, cannot

be expressed just in terms of the index x1β1 and the marginal c.d.f. F1,≤. General rectangular

structure cases therefore require a different approach to identification. Intuitively, the identifi-

cation of parameters βd and the threshold structure in these models should be more demanding

on the data compared to lattice models, especially given an unknown dependence structure of

unobservables. This is indeed the case until we get to the stage of identifying the joint c.d.f. of

unobservables. At that stage, as follows from Theorem 3 here and Theorem 4 in Komarova and

Matcham (2025) both lattice and non-lattice models become similarly demanding on the data,

which is an interesting result.

After introducing a helpful definition and notations, we proceed to prove identification in several

steps as follows:

1st step: identification of parameters corresponding to exclusive covariates in each process

(Theorem 1).

2nd step: identification of parameters corresponding to non-exclusive covariates (Theorem 2).
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3rd step: identification of the joint c.d.f. (Theorem 3).

4th step: identification of the thresholds (Theorem 4).

Definition 3 Covariate xd,i is exclusive to process d if xd,i |x−d has a non-degenerate distribution

almost everywhere for x−d ≡ (x1, . . . , xd−1, xd+1, . . . , xD).

Notation 2 For each d = 1, . . . , D, let xd,1:Ld
denote the subvector of xd that consists of all the

covariates in xd that are exclusive to the process Y ∗cd.

Intuitively, an exclusive covariate is one that contains information unique to the d-th process

Y ∗cd and cannot be perfectly predicted from the covariates associated with other processes. It

is without a loss of generality that these exclusive covariates are arranged to be the first few

covariates within xd.

Notation 3 Due to the presence of shared covariates among processes, the vector x = (x1, ..., xD)

may contain several identical variables. Its effective dimension will count each of these shared

covariates only once. Let us denote the effective dimension of x as K. In other words, K is the

number of exclusive covariates across all processes plus the number of covariates shared by at

least two processes (and counted only once in this effective dimension).

Theorem 1 gives sufficient conditions for the identification of βd;1;Ld
, d = 1, . . . , D, which are the

parameters corresponding to the exclusive covariates in each process.

Theorem 1 Consider a D-variate ordered discrete response model with the index structure (6).

Suppose Assumption 1 holds for each d = 1, . . . , D, and the model has a coherent general rect-

angular structure. Suppose that the following conditions are satisfied:

(a) Ld ≥ 1 for each d = 1, . . . , D.

(b) The coefficient βd,1 corresponding to xd,1 in xdβd is 1, d = 1, . . . , D.

(c) For each d = 1, . . . , D, there exists jd = 1, . . . ,Md − 1, such that P (Sd(jd)) > 0,

where Sd(jd) =
{
x : 0 < P (Y cd ≤ y

(d)
jd
|x) < P (Y cd ≤ y

(d)
jd+1|x)

}
.
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In addition, Sd(jd) contains a Cartesian product (xd,1, xd,1) × Sd,−1(jd), where xd,1 > xd,1

and Sd,−1(jd) ⊂ RK−1, such that P ((xd,1, xd,1) × Sd,−1(jd)) > 0 (the order of covariates

in this Cartesian product coincides with the order of covariates in x) and Sd,−1(jd) in not

contained in any proper linear subspace of RK−1.

Then parameters βd,1:Ld
, d = 1, . . . , D, corresponding to the exclusive covariates in each process

are identified.

Condition (a) states that each process has at least one exclusive covariate, and condition (b)

effectively states that the first (and potentially only) exclusive covariate in process Y ∗cd has a

non-zero coefficient; it further normalizes it to 1 (alternatively, could be normalized to −1 if the

impact is negative). Normalization restrictions like these are standard in semiparametric models

where parameter vectors generally can only be identified up to scale. These normalizations can

be different across d (some normalzied to to 1, some to −1). Condition (c) is a version of the rank

condition and, intuitively, requires that for d = 1, . . . , D, there is some some continuous variation

in at least one exclusive covariate in xd, conditional on other covariates, at least in that part

of domain that gives non-trivial (and, thus, informative) probabilities of choice with respect to

dimension d. One of the requirements is that Y cd takes at least two different values with positive

probabilities. In condition (c) for simplicity we took them to be two different consecutive values

y
(d)
jd

and y
(d)
jd+1 (more generally, they don’t need to be consecutive).

Our next result is on the identification of those parameters components that correspond to

shared regressors. It is given in Theorem 2 and relies on strengthening conditions on exclusive

covariates to have a large enough support. The result leverages the multidimensional nature of

the problem and the ability to consider probabilities P (∩D
d=1(Y

cd κd y
(d)
jd
)|x), where κd ∈ {≤, >}.

In bivariate models the regions inside these probabilities are easy to visualize in the latent space

as constructed using rectangles starting from one “corner” of partitioning structure. Note that

large (or large enough) support assumptions are common in the semiparametric literature and, in

particular, in semiparametric univariate ordered response models (see e.g. Manski (1985, 1988);

Horowitz (2010); Lewbel (2000, 2003)).

Theorem 2 Suppose all the conditions of Theorem 1 hold. Also assume that:

(a) there is a collection of indices (j1, ..., jd) such that the intersection S = ∩D
d=1Sd(jd) has

positive probability measure and full affine dimension K;
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(b) for each d either xd,1 is small enough to guarantee that α
(d)
j1,...,jD

− xd,1 − xd,−1βd,−1 is at

the upper support point of the εd distribution, or xd,1 is large enough to guarantee that

α
(d)
j1,...,jD

− xd,1 − xd,−1βd,−1 is at the lower support point of the εd distribution for xd,−1 ∈
Sd,−1(jd).

Then βd, d = 1, . . . , D, are identified.

Condition (b) Theorem 2 can be reformulated in terms of observed choice probabilities (and,

thus, verified in practice) where one would need to check that some of them can attain one of

its natural bounds (either 0 or 1) through the variation in an exclusive covariates with other

covariates taking values in some subset of a positive measure. Note that Theorem 2 does not rely

on the result of Theorem 1 as its proof does not use the fact that all parameters for exclusive

covariates have been identified and establishes the identification of the whole vector βd, including

βd,1:L1 independently of Theorem 1. It is instructive though to have Theorem 1 as a separate

result to emphasize that the identification of exclusive covariates’ parameters requires weaker

conditions.

Our next result is on the identification of the joint distribution of ε. It is enough to identify one

function Fκ1...κD
to fully characterize this distribution. We can identify the distribution from one

of the “corners” in our partitioning that gives us enough variation in probabilities.

Theorem 3 Suppose all the conditions of Theorem 2 hold for a collection of indices (j1, ..., jD)

such that jd = 1 or jd + 1 = Md for each d.

Additionally, in condition (b) of Theorem 2 suppose that for each d = 1, ..., D both of the following

conditions hold: xd,1 is small enough to guarantee that α
(d)
j1,...,jD

− xd,1 − xd,−1βd,−1 is at the upper

support point of the εd distribution, and xd,1 is large enough to guarantee that α
(d)
j1,...,jD

− xd,1 −
xd,−1βd,−1 is at the lower support point of the εd distribution for xd,−1 ∈ Sd,−1(jd) (this is in

contrast with either/or required in Theorem 2).

Then, under the normalization Fd,≤(e0d) = c0d for each marginal c.d.f. Fd,≤ for some known e0d

and c0d ∈ (0, 1), d = 1, . . . , D, the distribution of ε is identified.

Conditions on covariates in Theorem 3 first identify marginal distributions up to a shift and

then, coupled with the normalization restrictions, fully identify them. In addition, threshold
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parameters of the “corner” of the partitioning structure in the latent space implicitly specified

in the formulation of Theorem 3 (through the values of indices jd, d = 1, . . . , D,) are identified.

Then the observed probabilities of that “corner” region together with the knowledge of thresholds

defining it identify the joint distribution of ε.

Note that conditions in Theorems 1-3 are increasingly more restrictive. This is not surprising as,

first, when thinking of Theorem 2 vs Theorem 1 conditions, it is intuitive that the identification

of the parameters corresponding to shared covariates is harder due to multiple effects occurring

together when this covariate varies. When comparing Theorem 3 with Theorem 2 conditions,

we see that in the former conditions are more restrictive in requiring that there is sufficient

variation in covariates at the boundary of the partitioning of the latent space (namely, in one of

the “corners”).

Our final result is on the identification of threshold parameters. This result allows us to find out

whether decision-making is consistent with broad bracketing or narrow bracketing. Identifica-

tion comes from variation in covariates and consideration of probabilities of various rectangular

regions, which can be expressed in terms of Fκ1,...,κD
. Theorem 4 gives a formal identification

result for the thresholds. It strengthens previous conditions by essentially requiring that for any

rectangle Rj1,...,jD there is a positive mass of x that delivers a strictly positive choice probability

for this rectangle (in contrast, Theorem 3 only required that to apply in one of the “corner”

regions).

Theorem 4 Suppose all the conditions of Theorem 3 hold for any collection of indices

(j1, . . . , jD) with jd ∈ {1,Md − 1}, d = 1, . . . , D. Then all the thresholds α
(d)
q1,...,qd−1,qd,qd+1,...,qD

are identified.

We prove the identification of thresholds in Theorem 4 sequentially in a manner somewhat

consistent with solving a puzzle and it is best illustrated in the bivariate case in Figure 5. In

Stage 1, thresholds are identified that define “corner” regions Rq1,...,qD with qd ∈ {1,Md−1}. The
result of this step is given in Panel A. In Stage 2, border regions are considered and for any

d = 1, .., D, the thresholds a(d)q1,...,qd−1,qd,qd+1,...qD are identified when qh, h ̸= d, remains fixed at

its value 1 or Mh − 1 whereas qd varies from 2 to Mh − 2. In the bivariate case the thresholds

identified after Stage 2 are in Panel B in Figure 5 as dotted lines (dotted because their length

is not known). Stage 3 continues to consider border regions for each d = 1, .., D and identifies

thresholds a
(d)
q1,...,qd−1,qd,qd+1,...qD for when qd remains fixed at its value 1 or Md − 1 whereas qh,
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Y ∗c2
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Y ∗c1

Y ∗c2
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Y ∗c2
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Y ∗c1

Y ∗c2

Panel D

Figure 5: Stages of threshold system identification in the bivariate case.

h ̸= 2, vary from 2 to Mh − 2. In the bivariate case the thresholds identified after Stage 3

are in Panel C in Figure 5 (the thresholds from Stage 2 are now in solid lines at their lengths

are known). Stage 4 identifies all the thresholds “in the middle” proceeding sequentially from

the rectangular regions close to the border further into the depth of partitioning. Each stage

builds on the results of the previous stage. Importantly, the sequential nature of the threshold

identification process ensures that at each phase there are at most D unknown thresholds (out of

the overall 2D thresholds forming a rectangle of interest) that need to be identified. Identification

of yet unknown thresholds is obtained through a variation in D indices xdβd, d = 1, . . . , D, and

the knowledge of Fκ1,...,κD
for a suitable κ1, ..., κD (Theorem 3 implies the knowledge of Fκ1,...,κD

for any κ1, ..., κD). Which Fκ1,...,κD
is suitable for the identification task of a particular rectangle

depends on which thresholds forming this rectangle are already known and which still need to

be identified (up to D of these).

Note that the only assumption we make about the support of ε is that it is convex. This support

can be bounded, partially bounded (that is, bounded in some directions but not others), or
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extend over the entire RD. The geometry of this support is closely related to what we require

from the support of the exclusive covariates. For example, if the support of ε is bounded, then

it is sufficient for the exclusive covariates to vary only within a finite range as well. Regardless

of its specific form, our identification argument remains flexible as it can rely on areas near the

finite boundary of the support, or on directions in which the support is unbounded, as long as

those directions form a sufficiently large cone.

5.3 Estimation in a semiparametric model

The majority of existing estimation approaches for univariate semiparametric ordered response

models (either under full stochastic independence of the unobservable from covariates or under a

slightly more general formulation with a multiplicative scedastic function like in Chen and Khan

(2003)) do not extend to multivariate models with general rectangular structures.8 For example,

in the two-stage approach of Klein and Sherman (2002), which first estimates the index pa-

rameter using kernel density estimates of the conditional choice probabilities and then identifies

the threshold parameters through shift restrictions, adapting the shift restrictions to non-lattice

settings proves challenging. The same limitation applies to Liu and Yu (2019). Similarly, the ap-

proaches proposed in Lewbel (2000, 2003) do not generalize to non-lattice frameworks. Moreover,

the strategy of Chen and Khan (2003) cannot be directly applied to models with general rectangu-

lar structures to estimate all finite-dimensional parameters of interest. In such settings, equality

of joint probabilities P (Y (1) = y
(1)
j1
, Y (2) = y

(2)
j2

| x1, x2) = P (Y (1) = y
(1)
1 , Y (2) = y

(2)
1 | x̃1, x̃2) only

implies that x̃dβd = xdβd if and only if x−d = x̃−d, for d = 1, 2. Hence, their method may only

be suitable for estimating parameters associated with exclusive covariates.

If we were interested in the estimation of parameters on exclusive covariates, we could proceed

in many ways. We could combine pairwise differences (Honoré and Powell, 2005) with maximum

rank correlation (MRC) estimation (Han, 1987) or any other method suitable for single-index

models to estimate βd,1:Ld
for exclusive regressors. Pairwise differencing would restrict attention

to comparisons where non-exclusive covariates and all other dimensions are similar, while MRC

would exploit the stochastic dominance which is behind the result in Theorem 1.

We find that the only existing approach that can be extended to non-lattice model and which

permits the estimation of all the index parameters as well as all the thresholds and the unknown

8Most of these methods, however, can be extended to multivariate lattice models, as discussed in Komarova
and Matcham (2025).
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joint distribution of unobservables is Coppejans (2007), which, analogously to us, relies on the

assumption of independence of the unobservable from covariates as well as enough variation in

covariates. Focusing on the bivariate case for clarity, let us describe how we can extend Coppejans

(2007) to our setting.

Consider a random sample
{
(y(1)(i), y(2)(i), x

(i)
1 , x

(i)
2 )
}N

i=1
. First, create an estimate of the proba-

bility of the bivariate latent process falling into the rectangle Rj1,j2 :

ℓ
(i)
j1,j2

=
1∑

ℓ1=0

1∑
ℓ2=0

(−1)ℓ1+ℓ2F̂
(
a
(1)
j1−ℓ1,j2

− x
(i)
1 b1, a

(2)
j1,j2−ℓ2

− x
(i)
2 b2

)

Coppejans (2007) deals with the univariate F̂ and models it using a quadratic B -spline whose

coefficients are estimated jointly with the index and threshold parameters. In the multivariate

case, we can model F̂ using tensor-product B -splines and estimate their coefficients jointly with

thresholds and index parameters. The estimation proceeds by

max
θ,F̂

L(θ) = 1

N

N∑
i=1

M1∑
j1=1

M2∑
j2=1

1
[
(y(1)(i), y(2)(i)) = (y

(1)
j1
, y

(2)
j2
)
]
log(ℓ̂

(i)
j1,j2

),

where θ combines all the index and threshold parameters. In the bivariate setting, the basis

functions in tensor-product representation for F̂ consist of S1 · S2 products R1;s1,S1(e1; q1) ·
R2;s2,S2(e2; q2), s1 = 1, . . . , S1, s2 = 1, . . . , S2, of univariate B -splines evaluated at specific (e1, e2).

Here qd is the degree in dimension d = 1, 2. There is a system of knots in each dimension which

is not explicitly incorporated in our notation. The full tensor-product B -spline for F̂ (e1, e2) is a

linear combination of these basis functions:

S1∑
s1=1

S2∑
s2=1

hs1s2R1;s1,S1(e1; q1)R2;s2,S2(e2; q2),

with coefficients {hs1s2} constrained to ensure valid c.d.f. properties. Specifically, (a) monotonic-

ity in each dimension is enforced by

hs1s2 ≤ hs1+1,s2 , s1 = 1, . . . , S1 − 1, s2 = 1, . . . , S2,

hs1s2 ≤ hs1,s2+1, s2 = 1, . . . , S2 − 1, s1 = 1, . . . , S1;
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(b) c.d.f. bounds are maintained by 0 ≤ hs1s2 ≤ 1 for all s1, s2.
9 Linear equality constraints on

some hs1s2 can also impose normalization restrictions on marginal distributions of unobservables.

Coherency requires additional constraints on thresholds. In the bivariate case, these can be

imposed via a penalty term added to the objective: e.g. in the form of

−λN

(
α
(1)
j1+1,j2

− α
(1)
j1,j2

)2
·
(
α
(2)
j1,j2+1 − α

(2)
j1,j2

)2
, (7)

for a large λN > 0.

The distribution theory in Coppejans (2007) generalize as well with some obvious modifica-

tions required to make it applicable in multivariate non-lattice setting: regularity conditions and

conditions on the growth of the B -spline based would need to be adjusted.

6 Parametric specification

The semiparametric framework offers a solid approach for achieving identification results despite

model complexity, while also providing an estimation method that generalizes the approach of

Coppejans (2007). However, in practice, researchers may opt for a parametric family for the joint

distribution of unobserved ε due to computational convenience. This choice eliminates the need

for nonparametric estimation of the joint distribution and typically reduces the data require-

ments for identifying all unknown parameters. These parametric families must, however, remain

flexible to accommodate correlations among unobservables in the latent processes. Following es-

tablished traditions in statistics and econometrics, natural choices for the joint distribution of

unobservables are the multivariate normal distribution and a multivariate extension of a logistic

distribution.

Even though parametric versions of the model will be identified under the conditions outlined in

Section 5.2, intuitively, much weaker conditions ensuring sufficient variation (potentially discrete

and/or exclusive covariates) should suffice for identification in the parametric case. A useful anal-

ogy is the comparison between a univariate single-index model with an unknown monotone link

function and the probit model. The probit model requires only a finite number of points satisfy-

ing a rank condition, whereas the single-index model demands richer variation, often guaranteed

by the presence of a continuous covariate, which is not required in the probit model.

9For more details on shape constraints in tensor-product B-splines, see Bhattacharya and Komarova (2024).
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Adopting parametric assumptions within our general rectangular structure setting creates the

following theoretical challenge for identification. While they may exist in theory, deriving clear-

cut weaker conditions that do not involve exclusive or continuous covariates and are sufficient

to identify all model parameters is complex. This difficulty mirrors the lack of straightforward

identification conditions in multinomial probit or logit models that allow unknown correlations

among different latent processes. We illustrate parametric identification without exclusive co-

variates through a numerical identification exercise.

Consider the case D = 2. Let ε = (ε1, ε2)
′ be jointly normal with mean (0, 0)′, unit variances,

and correlation ρ.10 Denote its bivariate normal cumulative distribution function by Φ2(·, ·; ρ).
Focusing on one of the “corner” regions (for concreteness, the south-west quadrant), identification

of the k1 + k2 + 3 parameters β1, β2, ρ, α
(1)
11 , α

(2)
11 can be studied using T ≥ k1 + k2 + 3 distinct

covariate values xi = (xi1, xi2)
′ by writing a system of T equations in the k1 + k2 + 3 unknowns:

for i = 1, . . . , T

P (Y (c1) = y
(1)
1 , Y (c2) = y

(2)
1 |xi)︸ ︷︷ ︸

pobs(xi)

= Φ2(α
(1)
11 − x′

i1β1, α
(2)
11 − x′

i2β2; ρ), (8)

where the left-hand side pobs(xi) is observable. Larger T or the presence of covariates exclusive to

one of the processes can aid identification, but identification can proceed even when all covariates

are shared, provided the xi vary sufficiently.

To illustrate this, consider the case of each latent processes having a single covariate which is

shared between the two processes. Then θ = (β1, β2, α
(1)
11 , α

(2)
11 , ρ), has five unknowns. We perform

a numerical identifiability exercise around the true θ0 = (1.2, −0.8, 0.5, −0.2, 0.4). Define the

objective function for a candidate parameter θ as

QT (θ) =
T∑
i=1

(
pobs(xi)− Φ2

(
α
(1)
11 − x′

i1β1, α
(2)
11 − x′

i2β2, ρ
))2

.

We compute pobs(xi) from the known θ0. The experiment is conducted for two designs: (i) T = 5

design points drawn from the interval [−2, 2]; and (ii) T = 10 points obtained by adding five

more draws from the same interval.

To explore the local geometry of QT around θ0, we reparametrize ρ as z = atanh(ρ) (so z ∈ R

10As usual, we normalize means and variances because shifts and scale changes yield observationally equivalent
parameter vectors.
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and ρ = tanh(z) ∈ [0, 1]), and then consider hyperspheres in this transformed parameter space.

For a given radius r we sample 5000 directions on the sphere of Euclidean radius r about θ0; for

each sampled point θ we evaluate QT (θ) and record the minimum value found on that sphere.

Two direction-sampling schemes are applied: fixed-direction sampling in which we draw random

directions once and scale them to each radius r, and random-sphere sampling in which we draw

new random directions independently for each radius r.

Figure 6 shows the resulting plots (log scale) of the minimum objective QT versus radius r for

both sampling schemes (left: fixed-direction; right: random-sphere). These plots display how well

the model discriminates the true parameter vector from alternatives at varying distances, and

the extent to which this discrimination improves with the number of design points T (shown

through the fact that QT (θ) is increasing in T for all radii r). The pronounced jitter visible in

the random-sphere plot reflects sampling variability across radii.

Estimation To outline an estimation approach in the case of parametric assumptions on the

distribution of unobservables, we continue with D = 2 and ε = (ε1, ε2)
′ being jointly normal with

zero mean, unit variances, and correlation ρ. Given a random sample
{
(y(1)(i), y(2)(i), x

(i)
1 , x

(i)
2 )
}N

i=1

and collecting β1, β2, ρ and all the thresholds in α in one parameter vector θ, we construct the

log-likelihood function

L(θ) =
1

N

N∑
i=1

M1∑
j1=1

M2∑
j2=1

1
[
(y(1)(i), y(2)(i)) = (y

(1)
j1
, y

(2)
j2
)
]
log(ℓ

(i)
j1,j2

(θ)) =
1

N

N∑
i=1

log(ℓ(i)(θ)),

with ℓ
(i)
j1,j2

=
1∑

t1=0

1∑
t2=0

(−1)t1+t2Φ2

(
α
(1)
j1−t1,j2

− x
(i)
1 β1, α

(2)
j1,j2−t2

− x
(i)
2 β2; ρ

)
.

Analogously to semiparametric model case, this log-likelihood needs to be maximized subject

to a linear inequality constraints that describe ordering of thresholds in each dimensions, nor-

malization constraints on the the thresholds, and non-linear equality constraints q(α) = 0 that

collect coherency constraints (2) across all the local models.

The constrained maximum likelihood estimator (MLE) θ̂ solves the optimization problem

maxθ L(θ) subject to the described constraints on thresholds. The coherency constraints are

differentiable and so under the typical MLE regularity conditions (e.g. Newey and McFadden

(1994)), we have
√
N(θ̂−θ0)

d−→ N (0, V ), where V = BJB′, with J = E
[
∂ log(ℓ(i)(θ0))

∂θ
∂ log(ℓ(i)(θ0))

∂θ′

]
,
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Figure 6: Numerical illustration of identification for the bivariate-normal model. The vertical
axis (log scale) reports the minimum squared objective QT found on a sphere of radius r around
the true parameter vector; the horizontal axis is r. Left: fixed-direction sampling. Right: random-
sphere sampling. Curves are shown for T = 5 and T = 10 design points.

B = J−1 − J−1Q′(QJ−1Q′)−1QJ−1, and Q =
∂q(θ0)

∂θ′
. The natural plug-in sample-analogue esti-

mator of V provides a consistent estimator for the variance-covariance matrix.

7 Monte Carlo experiments

We now examine Monte Carlo simulations for the parametric case with normal errors, as outlined

in Section 6. We compare the constrained maximum likelihood estimator described in Section 6

for models with general rectangular structures (we will refer to it from now as non-lattice probit)

to the standard bivariate ordered probit estimator (that is, the estimator of a lattice model under

normal errors). The baseline model is

Y ∗c1 = xβ1 + w1γ1 + ε1, Y ∗c2 = xβ2 + w2γ2 + ε2,

where unobservables are independent of regressors and jointly normal with zero means and unit

variances. This setup distinguishes exclusive and non-exclusive covariates. We explore scenarios

with no exclusive covariates (γ1 = γ2 = 0) and with an exclusive covariate in one latent process.

The key findings are: (i) non-lattice model parameters may be estimated well without exclusive

covariates, and (ii) using lattice instead of non-lattice models can yield inconsistent estimators

for all parameters by ignoring broad bracketing in the decision process. Our simulations and

applications show cases in which an expected positive correlation between unobservables is esti-
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Figure 7: Latent variable space in Design 1

mated to be significantly negative under a lattice model. The inconsistency in index parameters

depends on how well the lattice model approximates the true non-lattice model.

Each simulation design uses 250 independent random samples of size N = 5, 000, with the

penalty term in (7) set to N . Alternative N and λN values yield similar results.

Design 1: 2×2 structure, no excluded regressors

We investigate parameter estimation in non-lattice probit models without exclusive covariates

by setting γ1 = γ2 = 0, thereby removing w1 and w2. We set β1 = 1, β2 = 0.5, ρ = 0.33, and

use a 2 × 2 non-lattice structure with thresholds α
(2)
11 = α

(2)
21 = 1, α

(1)
11 = −2, and α

(1)
12 = 1.5

(see Figure 7). We consider three distributions for the common regressor x: (Design 1A) uniform

[−5, 5], (Design 1B) discrete on 10 points {±5,±3.5,±2.5,±1.5, 0, 0.5} with equal probabilities,

and (Design 1C) discrete on five points {±5,±2.5, 0} with equal probabilities.

Table 1 reports mean and standard deviation of parameter estimates for Design 1A. The non-

lattice method estimates all parameters with minimal bias. The bivariate lattice ordered probit

method estimates β1 and the first-dimension threshold well, but performs poorly for β2, ρ, and

the second-dimension thresholds. Estimates of ρ are not very precise due to the absence of

excluded regressors.

For Designs 1B and 1C, we estimate using only the non-lattice probit method. Results in Table

1 show that all parameters are estimated well, even with the minimal discrete variation in x in

Design 1C. As expected, as a result of the limited variation in the common regressor, Design 1C

exhibits higher standard deviations.
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Table 1: Simulation results Design 1A

Parameter Truth Non-lattice model Lattice model
β1 1 1.00 (0.03) 0.77 (0.019)
β2 0.5 0.50 (0.02) 0.00 (0.01)
ρ 0.33 0.33 (0.12) -0.93 (0.02)

α
(2)
11 = α

(2)
21 1

1.00 (0.04)
0.72 (0.04)

1.00 (0.04)

α
(1)
11 -2 -1.99 (0.07)

-0.42 (0.02)
α
(1)
12 1.5 1.50 (0.08)

Notes: This table reports the sample mean and sample standard deviations (in parentheses) of
the estimates of the Design 1A parameters, over 250 samples. The “Nonlattice model” column
provides estimates from using the newly proposed nonlattice bivariate ordered probit model.
The “Lattice model” column assumes a lattice structure, but estimates the two equations
jointly.

Table 2: Simulation results Designs 1B and 1C

Parameter Truth Design 1B Design 1C
β1 1 1.00 (0.03) 1.00 (0.03)
β2 0.5 0.50 (0.02) 0.50 (0.03)
ρ 0.33 0.34 (0.12) 0.32 (0.14)

α
(2)
11 = α

(2)
21 1

1.00 (0.04) 0.997 (0.058)
1.00 (0.04) 1.00 (0.05)

α
(1)
11 -2 -2.00 (0.07) -1.99 (0.12)

α
(1)
12 1.5 1.50 (0.08) 1.49 (0.14)

Notes: This table reports the sample mean and sample standard deviations (in
parentheses) of the estimates of the non-lattice model in Designs 1B and 1C,
over 250 samples.
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Figure 8: Latent variable space for two equations: Design 2

Design 2: 4×3 with one excluded covariate

In the second simulation design, we extend the number of discrete values Md in both dimensions.

The discrete dependent variable Y c1 can take four values and Y c2 can take three values. This

generates a 4×3 non-lattice structure, illustrated in Figure 8. The common covariate x follows

a uniform [−3, 3] distribution, though continuity here is not necessary. The covariate w1 is a

discrete random variable taking values -2.5, -1.5, -0.5 and 0.5 with equal probability. We set

γ2 = 0 thus effectively removing w2 in the second equation. The parameter values are β1 =

1.5, γ1 = −4, β2 = 3 and ρ = 0.5.

Table 3 lists the across-simulation means and standard deviations of the index parameters and

the correlation coefficient. Table 5 in the online supplement provides the values of the thresholds,

together with their estimated means and standard deviations. The non-lattice bivariate ordered

probit method estimates all the parameters with almost no bias. On the contrary, the lattice

bivariate ordered probit method estimates the parameters with a relatively large bias. The mean

squared errors in the non-lattice method are far lower than those in the lattice method for

all of the parameters. Assuming a lattice structure makes estimating the correlation parameter

ρ decidedly difficult, with the method failing to estimate the correct sign for ρ, let alone an

approximately close value.
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Table 3: Simulation results for Design 2

Parameter Truth Non-lattice model Lattice model

β1 1.5 1.50 (0.04) 0.61 (0.01)
γ1 -4 -4.01 (0.09) -2.51 (0.04)
β2 3 2.99 (0.10) 1.64 (0.03)
ρ 0.5 0.50 (0.06) -0.60 (0.03)

Notes: Sample means and sample standard deviations (in parentheses) of the estimates of
the model parameters, over 250 repeated samples.

7.1 Cryptocurrency Familiarity and Optimism

In the first of two applications, we use data from the Survey of Consumer Payment Choice

(SCPC) (Foster et al., 2021) to study opinions on future movements in cryptocurrency prices.11

Conducted annually by the Federal Reserve Banks of Atlanta, Boston, and San Francisco, the

SCPC tracks U.S. consumers’ payment method adoption, recently noting a shift toward online

and mobile payments due to the COVID-19 pandemic. Our sample includes 4,600 individuals

(2015–2020), with data on demographics (e.g., income, age, gender, education), payment method

use (e.g., credit cards, cryptocurrencies, mobile platforms like Google Pay), and perceptions of

safety, convenience, and cost. Additional data cover fraud exposure, FICO score ranges, and

household financial roles. See Foster et al. (2021) for details.

We examine whether opinions on bitcoin’s future value are interdependent with cryptocurrency

familiarity. Y c1 is an ordered variable for familiarity with bitcoin (-1: not familiar, 0: slightly

familiar, 1: somewhat familiar, 2: moderately/extremely familiar).12 For Y c2 , we use an ordered

variable for bitcoin’s expected value in one year (-1: decrease, 0: no change, 1: increase). We use

a bivariate normal distribution specification for the vector of unobservables with zero mean and

unit variances and an unknown correlation ρ.

8 Applications

Figure 9 shows the estimated threshold structure for a non-lattice model. It reveals varied thresh-

olds. For example, individuals with low familiarity (blue dots) expect no value change at a lower

threshold in the opinion dimension (i.e., lower Y ∗Opinion values yield a ”no change” opinion com-

11See also Benetton and Compiani (2024) and Kahn and Linares Zegarra (2016).
12Moderate and extremely familiar are combined due to few respondents reporting extreme familiarity.
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Table 4: Estimation coefficients: bitcoin familiarity and optimism

Variable O-Probit O-Probit Non-lattice Lattice
Familiarity with Bitcoin
Low Income -0.16 (0.06) -0.11 (0.05) -0.16 (0.06)
Age -0.02 (0.00) -0.02 (0.00) -0.01 (0.00)
Male 0.55 (0.06) 0.42 (0.06) 0.55 (0.06)
Low Education -0.54 (0.09) -0.40 (0.09) -0.54 (0.09)

Bitcoin “optimism”
Low Income 0.07 (0.06) -0.00 (0.06) 0.07 (0.06)
Age -0.01 (0.00) -0.01 (0.00) -0.01 (0.00)
Male -0.13 (0.05) 0.02 (0.06) -0.13 (0.05)
Low Education 0.13 (0.07) -0.00 (0.08) 0.13 (0.07)
ρ NA NA 0.84 (0.23) 0.03 (0.03)
N 1818 1818 1818 1818

Notes: Columns labeled “O-probit” provide estimates from univariate ordered probit models. The “Non-
lattice” column provides estimates from using non-lattice bivariate ordered probit model. The “Lattice”
column assumes a lattice structure, but estimates the two equations jointly.

pared to other familiarity groups). Conversely, those with high familiarity (red crosshatch) have

closely spaced thresholds, defining a narrow ”no change” region. For this group, most Y ∗Opinion

values reflect strong opinions, either decreasing or increasing. These findings describe decision-

making structures, not probabilistic outcomes.

Table 4 provides estimates of β and ρ. The correlation ρ ranges from 0.03 (lattice model) to 0.84

(non-lattice model), with coefficients differing by over 20% in magnitude. Notably, the coefficient

on male changes sign – it is negative (and statistically significant at the 5% level) in the lattice

model and positive (not statistically significant at the 5% level) in the non-lattice model. The

lattice model thus suggests males are more pessimistic about bitcoin’s value as the effect as

P (Y Optimisim ≥ j|x−male, xmale = 1) − P (Y Optimisim ≥ j|x−male, xmale = 0) is negative for any

level j and any x−male. As discussed earlier, a non-lattice model allows for changes in the signs

of partial effects across the domain, therefore, the positive coefficient for males obtained there

does not directly imply that this model suggests males are more optimistic for any level j and

any x−male. Additional post-estimation analysis we have conducted does confirm, however, that

given the estimated thresholds the non-lattice model gives P (Y Optimisim ≥ j|x−male, xmale =

1) − P (Y Optimisim ≥ j|x−male, xmale = 0) as positive for any level j and any x−male in the data,

thus, giving a stable sign of this partial effect across the domain.13.

13A potentially different estimated threshold structure could have resulted in the switching of signs for this
partial effect.
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Figure 9: Estimates from cryptocurrency example when assuming a general rectangular struc-
ture model.

Another aspect illustrated by the thresholds in Figure 9 regarding the decision-making process

is that individual decisions can be modeled sequentially using a binary decision tree, where each

node represents a decision based on a single latent process. This structure can be termed a

hierarchical non-lattice model, a specific subset of non-lattice models.14 Hierarchical non-lattice

models maintain coherence, as each node in the decision tree further refines the partitioning of

the latent space. Figure 12 in the online supplement depicts the binary decision tree that outlines

the estimated hierarchical decision-making process in this cryptocurrency application.

8.1 Identifying moral hazard and adverse selection in insurance mar-

kets

In the empirical analysis of asymmetric information in insurance markets, a highly influential

framework was introduced by Chiappori and Salanie (2000), which proposed testing for adverse

selection by estimating a bivariate probit model linking insurance coverage decisions and ex post

risk realizations and taking a positive correlation between the latent errors of the insurance and

14Any model with a general rectangular structure can be represented by a decision tree, but typically, each
node may involve multiple or all latent processes.
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risk equations as evidence of asymmetric information. Subsequent research has emphasized the

limitations of this framework, pointing out its inability to disentangle (adverse) selection from

moral hazard because both forces contribute to the estimated positive correlation, but with dif-

ferent policy implications. As emphasized in Cohen and Siegelman (2010), “the disentanglement

of adverse selection and moral hazard is probably the most significant and difficult challenge that

empirical work on adverse selection in insurance markets faces.” Recent work has attempted to

move beyond these limitations. On the theoretical side, a large literature has developed richer

models of contract choice and risk response (e.g. Einav et al., 2010, Hendren, 2013). Empirically,

researchers have leveraged quasi-experimental variation or structural models to separately iden-

tify selection and moral hazard (e.g. Handel, 2013, Einav et al., 2013. Hackmann et al., 2015,

among many other). However, these approaches often require highly specific data environments

or strong structural assumptions.

Our general rectangular structure framework provides an alternative empirical strategy. First,

it allows utilization thresholds to vary with insurance status, thereby directly incorporating

individuals’ behavioral (“moral hazard”) response to coverage into the econometric model. At the

same time, it permits insurance-choice thresholds to depend on anticipated behavioral responses

to insurance, accommodating what Einav et al. (2013) and others term “selection on moral

hazard.” Of course, coherency still needs to be satisfied.

We apply this general rectangular structure to U.S. health insurance markets using the Medical

Expenditure Panel Survey (MEPS), which offers nationally representative data on insurance

coverage and healthcare utilization. Our sample includes approximately 60,000 individuals from

2005 to 2010, prior to the Affordable Care Act. Following the standard framework, we specify

latent insurance and utilization equations as

Y ∗
ins = xinsβins + εins, Y ∗

use = xuseβuse + εuse. (9)

Common covariates include demographics (logged income and its square, dividend payments,

family size, logged hourly wage, age, education, gender, marital status, race, region, and year)

and pre-existing conditions (diabetes, asthma, high blood pressure, high cholesterol, angina, heart

attack, stroke, emphysema, arthritis). An excluded covariate for xins is partner’s job-provided

coverage.

The insurance outcome Yins = 1 if the individual holds private health insurance in January and
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is 0 otherwise. Utilization Yuse is measured categorically (0 for no charges, 1 for below-median

charges, 2 for above-median charges)

Moral hazard is isolated in the general rectangular structure by allowing utilization thresholds to

depend on coverage. E.g., Yins = 1 lowers these thresholds if moral hazard is present. Insurance-

dimension thresholds may potentially differ across utilization responses, provided coherency is

maintained. One might argue, however, that due to the natural sequencing, where insurance cov-

erage is selected first and utilization occurs second, the thresholds in the insurance dimension are

invariant to utilization status. This restriction can be directly incorporated into the identification

and estimation processes, automatically ensuring coherency while simplifying both identification

and estimation. In this case, moral hazard is fully captured by differences in utilization thresh-

olds across coverage levels. Once this behavioral effect is accounted for, the remaining correlation

between εins and εuse can be interpreted as evidence of adverse or advantageous selection.

If, in contrast, the thresholds in the insurance-coverage dimension are permitted to vary with

utilization status (in addition to utilization thresholds varying with insurance coverage), this

accommodates the aforementioned “selection on moral hazard” where individuals may select

coverage partly based on their anticipated behavioral (“moral hazard”) response to insurance.

Then, the correlation between εins and εuse represents residual adverse selection, while moral

hazard continues to be captured by lower utilization thresholds when Yins = 1.

We estimate the model with a general rectangular structure subject only to coherency constraints,

thus potentially allowing for “selection on moral hazard” and letting the model and the data

reveal to us in particular if that phenomenon exists or whether the choices can be considered to

be sequential and consistent with the widely perceived natural timing of things.

Estimation results are presented in Figure 10. First, the estimated general rectangular structure

model does reveal moral hazard through coverage-dependent thresholds. Utilization thresholds

shift downward when Yins = 1: low-to-medium usage shifts from −0.02 (0.04) uninsured to -0.45

(0.07) insured, and medium-to-high from 0.68 (0.04) to 0.46 (0.08). Second, the results reveal no

“selection on moral hazard” as the insurance coverage thresholds are estimated as invariant to

utilization levels. The adverse selection is captured by the correlation coefficient ρ which drops

from 0.21 (0.01) in the lattice model to 0.04 (0.02) in the non-lattice model, suggesting minimal

adverse selection after accounting for moral hazard. Our findings align with a growing body

of evidence from structural and experimental studies (e.g. Einav et al., 2013, Handel, 2013),

which generally find limited adverse selection once moral hazard is accounted for. Note that
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Figure 10: Estimated thresholds for insurance coverage (Y ∗
ins) and healthcare utilization (Y ∗

use),
with standard errors in parentheses.

additionally the estimated structure allows for a cross-partial (indirect) effect of partner’s job-

provided coverage on the degree of utilization, even though this variable does not enter directly

the latent process in the utilization dimension.

Thus, our general rectangular structure approach disentangles moral hazard from adverse selec-

tion while avoiding strong assumptions, using only observational data and flexible thresholds. It

outperforms traditional lattice models and, because it can be applied with standard survey or

administrative data, provides a powerful way to revisit much of the empirical literature built on

lattice-based or ordered probit models.

9 Conclusion

This paper proposes a framework with general rectangular structures that extends the reach

of traditional ordered response models, thereby providing new insights into economic decision-

making processes. The framework captures interactions across dimensions in both decision rules

and latent factors, with traditional lattice models as a special case. By formalizing coherency,

deriving utility-based microfoundations, and proving identification, our framework enables real-

istic modeling of complex multidimensional choices. The approach reveals sign-changing partial

effects, indirect covariate influences, and varying complementarity or substitutability, all of which

are absent in lattice models. In doing so, it expands the econometric toolkit for studying mul-

tidimensional decisions and improves interpretability. As our empirical examples demonstrate,

existing important economic contexts such as selection markets can be revisited (and new envi-
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ronments can be traversed) with the models we have introduced.
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Online Supplement

1 Appendix A: Coherency

Coherency plays a critical role in both our identification and estimation routines, as well as in

the conceptual framing of the model. Specifically, we interpret the model as representing the

behavior of a single decision maker, for whom incoherent (i.e., logically inconsistent) choices

would be implausible.

Although the literature on strategic interaction often distinguishes between incoherency and

incompleteness, we subsume both under the broader notion of incoherency. From a technical

standpoint, we define a model with the given set of thresholds in the latent space as coherent

(or coherent in the latent space) if the rectangles Rj1,...,jD defined in (1) form a partition of RD;

that is, they are mutually exclusive and collectively exhaustive over RD.

An equivalent way to characterize this notion of coherence is to ask: under what conditions

on the latent thresholds does the observed coherency in choice probabilities and reflected in

the fact that
∑D

d=1

∑Md

jd=1 P (Y = (y
(1)
j1
, . . . , y

(D)
jD

)
∣∣x) = 1 translate into coherence in the latent

space? These conditions must be generic; that is, they should not depend on the distributional

assumptions regarding observables or unobservables.

1.1 Bivariate case

We begin by examining the bivariate case, D = 2. The main result for this case is presented

in Proposition 1, which states that a bivariate model with a general rectangular structure is

generically coherent in the latent space if and only if it is locally hierarchical in every local

configuration. Specifically, this involves examining each of four outcomes (y
(1)
j1
, y

(2)
j2
), (y

(1)
j1+1, y

(2)
j2
),

(y
(1)
j1
, y

(2)
j2+1) and (y

(1)
j1+1, y

(2)
j2+1), where we consider incremental moves from a given point (j1, j2)

along one or both dimensions. The model must satisfy local hierarchies across all such configu-

rations to ensure overall coherency.

Proof of Proposition 1. Sufficiency. First, observe that an incremental move from (j1, j2) in only

one dimension – either to (j1 + 1, j2) or to (j1, j2 + 1) – cannot by itself generate incoherency.

This is because the definition of the rectangles Rj1,j2 in equation (1) ensures continuity at the

1



Figure 11: Potential violations of coherency.

Panel 1 Panel 2 Panel 3

Notes: Violation of coherency in Panel 1 is ruled out by the thresholds structure in (1). Violations
of coherency in Panels 2 and 3 are not immediately ruled out by (1).

thresholds along single-dimensional moves. Specifically, in dimension 1, the rectangle Rj1,j2 ends

at the threshold α
(1)
j1,j2

, which simultaneously serves as the lower bound for the adjacent rectangle

Rj1+1,j2 . In other words, incoherency patterns such as the one illustrated in Panel 1 of Figure

11 are ruled out by construction. A similar argument holds in dimension 2: the rectangle Rj1,j2

terminates at threshold α
(2)
j1,j2

, which also acts as the starting threshold for Rj1,j2+1. Thus, the

design of the threshold structure inherently prevents discontinuities along single-dimensional

moves.

Thus, the only case requiring careful attention is a two-dimensional move from (j1, j2) to (j1 +

1, j2 + 1). In such moves, coherency violations can arise, as illustrated in Panels 2 and 3 of

Figure 11. Condition (2) ensures proper alignment of the rectangles Rj1,j2 and Rj1+1,j2+1 along

their shared boundary. It guarantees that there is no gap between the rectangles and no overlap

in their interiors.

Necessity. Consider a general coherent model. Suppose it fails to be locally hierarchical in the

sense that the threshold condition stated in Proposition 1 is violated for some local configuration

{(j1 + ℓ1, j2 + ℓ2)}ℓ1,ℓ2∈{0,1}. In such a case, the violation necessarily leads to either a gap (as

shown in Panel 2) or an interior overlap (as shown in Panel 3) in Figure 11.

Since we are considering a generic model and looking for conditions in terms of thresholds alone,

we can assume that the vector of latent utilities (Y ∗c1 , Y ∗c2), conditional on x (and for a set of

x with positive measure), has a strictly positive probability of falling into any rectangle with a

non-empty interior. This implies that either the gap (Panel 2) or the overlap (Panel 3) will have

a strictly positive probability mass conditional on x.

2



Consequently, in the case of a gap, we would observe:

1∑
ℓ1=0

1∑
ℓ2=0

P

(
Y = (y

(1)
j1+ℓ1

, y
(2)
j2+ℓ2

) | x, Y ∈
1⋃

ℓ1=0

1⋃
ℓ2=0

{(y(1)j1+ℓ1
, y

(2)
j2+ℓ2

)}

)
< 1,

while in the case of an overlap with non-empty interior, we would have:

1∑
ℓ1=0

1∑
ℓ2=0

P

(
Y = (y

(1)
j1+ℓ1

, y
(2)
j2+ℓ2

) | x, Y ∈
1⋃

ℓ1=0

1⋃
ℓ2=0

{(y(1)j1+ℓ1
, y

(2)
j2+ℓ2

)}

)
> 1.

Either case contradicts the finite additivity of the probability measure, namely:

P (Y ∈ A | x) =
∑

(j1,j2):(y
(1)
j1

,y
(2)
j2

)∈A

P (Y = (y
(1)
j1
, y

(2)
j2
) | x).■

The core principles underlying Proposition 1 can be naturally extended for any D > 2.

1.2 D Greater Than 2

For D > 2, we again examine each local configuration of the form {(j1 + ℓ1, . . . , jD +

ℓD)}ℓd∈{0,1}, d=1,...,D. Coherency within every such local configuration ensures global coherency

of the model. We proceed incrementally in deriving coherency conditions: starting with moves

in one dimension, then in pairs of dimensions, and so on, up to moves in all D dimensions.

For concreteness, consider the case D = 3. As in the bivariate case, any single-dimensional move

within a local configuration (i.e., from (t1, t2, t3) to a neighboring point along one axis) cannot

induce incoherency. This follows from the definition of the rectangles Rt1,t2,t3 in equation (1),

which ensures continuity at threshold boundaries along each coordinate axis.

The next step is to consider moves that involve changes along two dimensions. For example,

transitions such as (j1 + 1, j2 + 1, j3) to (j1, j2 + 1, j3 + 1), among others, must also preserve

coherency. To verify this, we project the local configuration onto the relevant two-dimensional

subspace, holding the third coordinate fixed. For each such projection, we apply the bivariate

condition from Proposition 1. This yields conditions

(α
(1)
j1,j2,t3

− α
(1)
j1,j2+1,t3

)(α
(2)
j1+1,j2,t3

− α
(2)
j1,j2,t3

) = 0, t3 ∈ {j3, j3 + 1},
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(α
(1)
j1,t2,j3

− α
(1)
j1,t2,j3+1)(α

(3)
j1+1,t2,j3

− α
(3)
j1,t2,j3

) = 0, t2 ∈ {j2, j2 + 1},

(α
(2)
t1,j2,j3

− α
(2)
t1,j2,j3+1)(α

(3)
t1,j2+1,j3

− α
(3)
t1,j2,j3

) = 0, t1 ∈ {j1, j1 + 1}.

This must hold for all pairs of dimensions and all fixed values of the remaining coordinate.

Finally, we must consider transitions involving simultaneous changes in all three dimensions.

These correspond to movements between opposite orthants within the local configuration. To

prevent incoherency, the thresholds where these orthants “meet” must align in at least one

dimension. Define the pair of opposite orthants as those corresponding to

j = (j1 + ℓ1, j2 + ℓ2, j3 + ℓ3), and j′ = (j1 + 1− ℓ1, j2 + 1− ℓ2, j3 + 1− ℓ3).

for ℓ = (ℓ1, ℓ2, ℓ3)
′ ∈ {0, 1}3. Then the coherency condition for such pairs is

∏3
d=1(α

(d)
j −α

(d)

j′
(d)
) = 0,

where j′(d) denotes the index vector obtained from j by replacing the d-th coordinate with that

of j′:

j′(d) = (j1 + ℓ1, . . . , jd−1 + ℓd−1, jd + 1− ℓd, jd+1 + ℓd+1, . . . , j3 + ℓ3).

This holds for all 8 choices of ℓ (or equivalently, all 4 diagonal pairs up to symmetry).

This condition ensures that, for each pair of opposite orthants within a local configuration, the

corresponding threshold surfaces meet along at least one boundary, thereby ruling out both gaps

and overlaps in the latent space.

For general D > 3, the approach proceeds inductively, leveraging coherency conditions estab-

lished for lower dimensions. As in prior cases, single-dimensional moves within any local configu-

ration preserve coherency due to the continuity enforced by the rectangle definitions in equation

(1) along each axis. Coherency for moves involving changes in any k dimensions (2 ≤ k < D)

is ensured by projecting the local configuration onto the corresponding k-dimensional subspace

(fixing the remaining D − k coordinates) and applying the coherency conditions derived for di-

mension k (e.g., Proposition 1 for k = 2, or the trivariate conditions for k = 3). Finally, for

simultaneous changes across all D dimensions, which correspond to transitions between opposite

corners of the D-dimensional hyperrectangle, the coherency condition requires that the threshold

hypersurfaces meet along at least one boundary, with the formulation analogous to the case of

D = 3. This gives 2D−1 conditions.

This inductive framework ensures global coherency for arbitrary D > 2.
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2 Appendix B: Proofs

Proof of Theorem 1. Without a loss of generality, take d = 1. The proof proceeds in the following

way. First, we establish an auxiliary result that P (Y c1 ≤ y
(1)
j1

|x) is non-increasing in the index

x1β1 with other indices fixed and is strictly decreasing for x in Sd(j1) that satisfies condition (c)

of the theorem. Second, having established that strict monotonicity, we then use techniques in

the spirit of single-index identification approaches by varying x1,1 to establish identification.

From the model definition,

P (Y c1 ≤ y
(1)
j1

|x) =
j1∑
j̃=1

M2∑
j2=1

. . .

MD∑
jD=1

P
(
(Y ∗c1 , . . . , Y ∗cD) ∈ Rj̃,j2,...,jD

|x
)

=

j1∑
j̃=1

M2∑
j2=1

. . .

MD∑
jD=1

P
(
(x1β1 + ε1, . . . , xDβD + εD) ∈ Rj̃,j2,...,jD

|x
)
,

j1 = 1, . . . ,M1. Let us show that this probability is non-increasing in x1β1 when other indices

xℓβℓ, ℓ ̸= 1, remain fixed.

For any j1 = 1, . . . ,M1, the partitioning structure in the decision rule guarantees that

∪j1
j̃=1

∪M2
j2=1 . . . ∪

MD
jD=1 Rj̃,j2,...,jD

= ∪M2
j2=1 . . . ∪

MD
jD=1 R

∗
j1,j2,...,jD

, where

R∗
j,j2,...,jD

= (−∞, α
(1)
j,j2,...,jD

]×D
d=2 (α

(d)
j,j2,...,jd−1,jd−1,jd+1,...,jD

, α
(d)
j,j2,...,jd−1,jd,jd+1,...,jD

].

In turn, this gives

P (Y c1 ≤ y
(1)
j1

|x) =
M2∑
j2=1

. . .

MD∑
jD=1

(
F
(
−∞, α

(2)
j,j2−1,...,jD

− x2β2, . . . , α
(D)
j,j2,...,jD−1 − xDβD

)
+ F

(
α
(1)
j1,j2,...,jD

− x1β1, α
(2)
j1,j2,...,jD

− x2β2, . . . , α
(D)
j1,j2,...,jD

− xDβD

)
− 1
)
,

where F and F , as stated in Notation 1, denote the joint c.d.f. and survival functions of

ε = (ε1, . . . , εD)
′, respectively. By coordinate-wise monotonicity of F , P (Y c1 ≤ y

(1)
j1

|x) is non-

increasing in x1β1 when other indices xℓβℓ, ℓ ̸= 1, remain fixed. Note that condition (c) of the

theorem guarantees that α
(1)
j1,j2,...,jD

− x1β1 is in the interior of the support of ε1 for x ∈ S1(j1).

Using the fact that the support of ε1 is convex (implied by convexity of the support of ε), we

then conclude that P (Y c1 ≤ y
(1)
j1

|x) is strictly decreasing in x1β1 when other indices remain

5



fixed and x ∈ S1(j1),

Let us now take two vectors b = (b′1, . . . , b
′
D)

′, β = (β′
1, . . . , β

′
D)

′ ∈ R
∑D

d=1 kd that satisfy nor-

malization condition (b) of the theorem and suppose that both are consistent with the observed

conditional probabilities of choice. If L1 = 1, then the result of the theorem is already established

for d = 1. Suppose L1 > 1 and b1,2:L1 ̸= β1,2:L1 . Then from the condition on the probability of

(x1,1, x1,1) × S1,−1(j1) as well as the full affine dimension of S1(j1) in condition (c) we conclude

that x1,2:L1β1,2:L1 ̸= x1,2:L1b1,2:L1 for a positive measure of x1,2:L1 that belong to the projection of

S1,−1(j1) on the last L1 − 1 components (that is, those corresponding to x1,2:L1). Without a loss

of generality, suppose that for a positive measure of such x1,2:L1 we have

x1,2:L1β1,2:L1 > x1,2:L1b1,2:L1 . (10)

Now fix any x1,2:L1 that satisfies (10). Then for any x̃1,1 ∈ (x1,1.x1,1), we have x̃1,1+x1,2:L1β1,2:L1 >

x̃1,1 + x1,2:L1b1,2:L1 , and for given x1,2:L1 we can find ˜̃x1,1 ∈ (x1,1.x1,1) such that

x̃1,1 + x1,2:L1β1,2:L1

(a)
> ˜̃x1,1 + x1,2:L1β1,2:L1

(b)
> x̃1,1 + x1,2:L1b1,2:k1 . (11)

Because of x1,1 being exclusive for Y ∗c1 , when we vary x1,1, the values of x2, . . . , xD remain

exactly the same. This means that in the expression for P (Y c1 ≤ y
(1)
j |x1, . . . , xD), the values

of indices xℓβℓ, xℓbℓ, ℓ ̸= 1, remain exactly the same. This means that by varying x1,1, we can

equivalently express the ordering of P (Y c1 ≤ y
(1)
j |x1, . . . , xD) with the reverse ordering of the

first argument in the first index.

Therefore, (a) in (11) implies that

P (Y c1 ≤ y
(1)
j | (x̃1,1, x1,2:L1 , x2, . . . , xD)) < P (Y c1 ≤ y

(1)
j | (˜̃x1,1, x1,2:L1 , x2, . . . , xD)).

Since we supposed that both β and b can generate observable choice probabilities of choice, then

(b) in (11) implies that

P (Y c1 ≤ y
(1)
j | (˜̃x1,1, x1,2:L1 , x2, . . . , xD)) < P (Y c1 ≤ y

(1)
j | (x̃1,1, x1,2:k1 , x2, . . . , xD)).

6



Combining the last two inequalities results in an obvious contradiction

P
(
Y c1 ≤ y

(1)
j | (x̃1,1, x1,2:L1 , x2, . . . , xD)

)
< P

(
Y c1 ≤ y

(1)
j | (x̃1,1, x1,2:L1 , x2, . . . , xD)

)
,

and from our discussion it is clear that this contradiction is obtained for a positive measure of

(x̃1,1, x1,2:L1 , x2, . . . , xD). Thus, we cannot have β1,2:L1 ̸= b1,2:L1 , and, therefore, β1,2:L1 is identified

relative to any b1,2:L1 ̸= β1,2:L1 . We can do this for any d. □

Proof of Theorem 2. Fix d. If in condition (b) of the theorem we have xd,1 is small enough

then we take κd to be ≤. If in that condition xd,1 is large enough, we take κd to be >. Analyze

now P (∩D
d=1(Y

cd κd y
(d)
jd

|x) for any x in the intersection indicated in condition (a). First of all,

that condition implies that this probability is strictly between 0 and 1. Second,

P (∩D
d=1(Y

cd κd y
(d)
jd

|x) =
D∑

d=1

∑
j̃d κd jd

P
(
(x1β1 + ε1, . . . , xDβD + εD) ∈ Rj̃1,...,̃jD

|x
)

Focus e.g. on d = 1 and for any d ≥ 2 take xd,1 → xd,1 if κd is ≤ and take xd,1 → xd,1 if κd is >.

Condition (a) guarantees that this limit can be taken within the intersection indicated in that

condition. By condition (b), in such a limit of P (∩D
d=1(Y

cd κd y
(d)
jd
) |x) we obtain a function that

no longer depends on indices xdβd, d ̸= 1, and is strictly monotone with respect to x1β1 for x1

from the projection of S1(j1) on the first k1 components.

For instance, if all the relevant for this limit boundaries xd,1, xd,1 are infinite (that is, −∞, ∞,

respectively), then we obtain

P (∩D
d=1(Y

cd κd y
(d)
jd
) |x) → F1,κ1

(
α
(1)
j1,m2...,mD

− x1β1

)
,

where md = Md is κd is > and md = 1 if κd is ≤, for d ̸= 1. Condition (a) of the theorem as

well as the fact that P ((Y ∗c1 , ..., Y ∗cD ∈ Rj̃1,j̃2,..,j̃D
|x) → 0 for j̃d κd jd, d ≥ 2, and (j̃2, .., j̃D) ̸=

(m2, ...,mD), guarantee that α
(1)
j1,m2...,mD

−x1β1 is in the interior of the support of ε1. Therefore, the

limit is strictly monotone on the projection of S1(j1) on the first k1 components (corresponding

to vector x1). It will be strictly increasing if κ1 is > and strictly decreasing if κ1 is ≤.

If some (or all) of the relevant boundaries xd,1, xd,1 are finite, then the limit of P ((Y ∗c1 , ..., Y ∗cD) ∈
Rj̃1,j̃2,..,j̃D

|x) has a more complex form and can involve several thresholds. However it will still

remain the case the overall limit will not depend on any indices except for x1β1 and will be

7



strictly monotone in x1β1 on the projection of S1(j1) on the first k1 components.

Then, using the single-index approach analogous to the one we used in Theorem 1 we can

establish the identification of the full vector β1. This can be done for any βd. □

Proof of Theorem 3. If in the condition of the theorem jd = 1, we take κd to be ≤ and if

jd = Md−1, then we take κd to be >. We start by showing identification of all α
(d)
j1,j2,...,jD

shaping

the “corner” rectangular region corresponding to

P (∩D
h=1

(
Y ∗ch κh α

(h)
j1,j2,...,jD

)
|x) = P (∩D

h=1

(
Y ch κh y

(h)
jh

)
|x).

Indeed, these probabilities are observed. Fix d. Just like in the proof of Theorem 2, for any h ̸= d

take xh,1 → xh,1 if κh is ≤ and take xh,1 → xh,1 if κh is >. By doing this, in the limit of xh,1,

h ̸= d, we identify Fd,κd
(α

(d)
j1,j2,...,jD

− xdβd).

Now, using the support condition on xd,1, we obtain that α
(d)
j1,j2,...,jD

−xdβd goes through the whole

support of εd. Using the normalization on Fd,κd
we find x0d such that Fd,κd

(α
(d)
j1,j2,...,jD

−x0dβd) = c0d

if κd is ≤, or x0d such that 1−Fd,κd
(α

(d)
j1,j2,...,jD

−x0dβd) = c0d if κd is >. From this we can identify

α
(d)
j1,j2,...,jD

as α
(d)
j1,j2,...,jD

= e0d + x0dβd (e0d and βd are known).

Combining the knowledge of α
(d)
j1,j2,...,jD

for any d = 1, . . . , D, with the exclusiveness of some

covariates in each index and support conditions on xd,1, d + 1, . . . , D, we can identify the joint

distribution of ε as

P
(
∩D
h=1(Y

∗ch κh α
(h)
j1,...,jD

)|x
)
= Fκ1,κ2,...,κD

(α
(1)
j1,...,jD

− x1β1, . . . , α
(D)
j1,...,jD

− xDβD)

as the vector (α
(1)
j1,...,jD

− x1β1, . . . , α
(D)
j1,...,jD

− xDβD) is known and can be taken to be any value

on the support of ε. □

Proof of Theorem 4.

Stage 1. Pick any “corner” rectangular region Rj1,...,jD , jd ∈ {1,Md} for each d = 1, . . . , D. It

is described by D unknown thresholds α
(d)
j1,..qd−1,rd(jd).jd+1,...,jD

, where

rd(jd) =

 1, if jd = 1,

Md − 1, if jd = Md.
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Our goal is to identify them. Once again, it is convenient to associate a certain direction for the

distribution of ε with this “corner”. If jd = 1 we take κd to be ≤, and if jd = Md we take κd to

be >,

In Theorem 3 we only considered one “corner” region associated with one particular direction

(κ1, ..., κD) and identified the D thresholds that shape it (other D thresholds are either at ∞
or −∞ depending on the location pf the “corner”). Conditions of this Theorem 4 imply that

we can now consider any (κ1, ..., κD) with its associated “corner” region n and then apply the

machinery of the Theorem 3 to identify its unknown thresholds.

Thus, this stage identifies thresholds shaping all the “corner” rectangular regions.

Stage 2. In this stage we continue to consider rectangular regions near the border. In Stage 1

for each “corner” region we considered the D known thresholds were fixed at ∞ or −∞. Now

we will have only D− 1 known thresholds fixed at ∞ or −∞. At least one known threshold will

be finite and known from the previous stage.

Namely, fix d and consider a border rectangular region Rj1,...,jd−1,qd,jd+1,...,jD where jh ∈ {1,Mh}
for h ̸= d and qd = 2, . . . ,Md − 1, It is described by D + 1 thresholds α

(d)
j1,...,jd−1,qd−1,jd+1,...,jD

,

α
(d)
j1,...,jd−1,qd,jd+1,...,jD

(in dimension d) and α
(h)
j1,...,jd−1,qd,jd+1,...,jD

, h ̸= d. For qd = 2 and qd = Md − 1

we only have D unknown thresholds since α
(d)
j1,...,jd−11,jd+1,...,jD

and α
(d)
j1,...,jd−1,Md−1,jd+1,...,jD

have

been identified in Stage 1. The idea is then to indeed proceed sequentially from, say, qd = 2 in

an increasing manner.

Within this stage, note that we can identify thresholds α
(d)
j1,...,jd−1,qd,jd+1,...,jD

, for qd = 2, . . . ,Md−2

in the following way. Choosing, once again, κh to be ≤ if jh = 1 and to be > if jh = Mh, h ̸= d,

obtain that

P
(
Y cd = y(d)qd

, ∩h̸=d

(
Y ch = y

(h)
jh

)
|x
)
= P

(
α
(d)
j1,...,jd−1,qd−1,jd+1,...,jD

< Y ∗cd

≤ α
(d)
j1,...,jd−1,qd,jd+1,...,jD

,∩h̸=d

(
Y ∗ch κh α

(h)
j1,...,jd−1,qd,jd+1,...,jD

))
.

9



By taking xh,1 → xh,1 if κh is ≤ or xh,1 → xh,1 if κh is > for all h ̸= d, we identify

lim
xh,1→,h̸=d

P (Y cd = y(d)qd
∩h̸=d

(
Y ch = y

(h)
jh

)
|x) =

Fd,≤
(
α
(d)
j1,...,jd−1,qd,jd+1,...,jD

− xdβd

)
− Fd,≤

(
α
(d)
j1,...,jd−1,qd−1,jd+1,...,jD

− xdβd

)
.

It is clear that from the knowledge of Fd,≤ (Theorem 3) and α
(d)
j1,...,jd−1,1,jd+1,...,jD

we can identify

from this limit α
(d)
j1,...,jd−1,2,jd+1,...,jD

simply by choosing xd such that Fd,≤
(
α
(d)
j1,...,jd−1,qd,jd+1,...,jD

−
xdβd

)
∈ (0, 1). Using the same arguments, we can identify α

(d)
j1,...,jd−1,3,jd+1,...,jD

, etc. Proceeding

sequentially, we will establish identification of any such α
(d)
j1,...,jd−1,qd,jd+1,...,jD

.

Thus, in each rectangular region Rj1,...,jd−1,qd,jd+1,...,jD under consideration in this Stage 2 we now

only have D − 1 unknown thresholds α
(h)
j1,...,jd−1,qd,jd+1,...,jD

, h ̸= d.

Now we also fix one h such that h ̸= d and show the threshold α
(h)
j1,...,jd−1,qd,jd+1,...,jD

is identified.

For this, we consider P (Y cd = y
(d)
qd ∩h̸=d

(
Y ch = y

(h)
jh

)
|x) again (as above) but now take to the

limit xh̃,1 for h̃ ̸= h, h̃ ̸= d. Namely, for such h̃ take xh̃,1 → xh̃,1 if κh̃ is ≤ and take xh̃,1 → xh̃,1 if

κh̃ is >. In such a limit we identify

Fd,h;≤,κh

(
α
(d)
j1,...,jd−1,qd,jd+1,...,jD

− xdβd, α
(h)
j1,...,jd−1,qd,jd+1,...,jD

− xhβh

)
− Fd,h;≤,κh

(
α
(d)
j1,...,jd−1,qd−1,jd+1,...,jD

− xdβd, α
(h)
j1,...,jd−1,qd,jd+1,...,jD

− xhβh

)
, (12)

where Fd,h;≤,κh
(a1, a2) ≡ P (εd ≤ a1, εh κh a2). Function Fd,h;≤,κh

is identified as an impli-

cation of Theorem 3. Thus, in the known limit (12) there is only one unknown threshold

α
(h)
j1,...,jd−1,qd,jd+1,...,jD

.

Denote a1 = α
(d)
j1,...,jd−1,qd−1,jd+1,...,jD

− xdβd, a2 = α
(h)
j1,...,jd−1,qd,jd+1,...,jD

− xhβh, ∆a1 =

α
(d)
j1,...,jd−1,qd,jd+1,...,jD

− α
(d)
j1,...,jd−1,qd−1,jd+1,...,jD

. Since the function Fd,h;≤,κh
(a1 + ∆a1, a2) −

Fd,h;≤,κh
(a1, a2) is strictly monotone in a2 as long as (a1 +∆a1, a2) and (a1 +∆a1, a2) remain in

the support of (εd, εh) (namely, it is strictly increasing if κh is ≤ and strictly decreasing if κh is

>), then we the right choice of xd, xh we can identify α
(h)
j1,...,jd−1,qd,jd+1,...,jD

.

Stage 3. In this stage we continue to consider rectangular regions near the border. Compared

with Stages1 1 and 2, now we will have only D−2 known thresholds fixed at ∞ or −∞. At least

two other thresholds will be known and finite from previous stages.

Consider a rectangular border region Rj1,...,jd1−1,qd1 ,jd1+1,...,jd2−1,qd2 ,jd2+1,...,jD for some d1, d2 such
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that d1 < d2 and where jh ∈ {1,Mh} for h ̸= d1, d2 and qdj = 2, . . . ,Mdj − 1, j = 1, 2. In this

border region we allow discrete processes in dimensions d1 and d2 to take any of their possible

values whereas in all the other dimensions they take their boundary values. without a loss of

generality we will take d1 = 1 and d2 = 2.

Region Rq1,q2.j3,...,jD , where jh ∈ {1,Mh} for h ̸= d1, d2 ≥ 3 is described by D + 2 thresholds

α
(1)
q1−1,q2,j3,...,jD

, α
(1)
q1,q2,j3,...,jD

, α
(2)
q1,q2−1,j3,...,jD

, α
(2)
q1,q2,j3,...,jD

(in dimensions 1 and 2) and α
(h)
q1,q2,j3,...,jD

,

h ≥ 3 (other dimensions). We proceed sequentially – first, taking q1 ∈ {2,M1−2}, q2 ∈ {2,M2−2}
and then changing them one unit at a time. The direction in which we proceed (from a high to

low index, or the other way around) though may depend on the properties of the support E12 of
(ε1, ε2)

′.

Subcase 1 If E12 is not bounded in any directions, it means that it is R2 and in the condition

of the theorem we necessarily have xh,1 = −∞ and xh,1 = ∞ for h = 1, 2. Then it doe not

matter in which direction we proceed. E.g., we can first consider q1 = 2, q2 = 2. Using results

of Stage 2, we find that we only deal with D unknown thresholds α
(1)
2,2,j3,...,jD

, α
(2)
2,2,j3,...,jD

and

α
(h)
2,2,j3,...,jh−1,rh(jh),jh+1,...,jD

, h ≥ 3. Notice that at this stage, due to coherency requirements, it

may be strictly fewer than D of these thresholds unknown. However, all D may potentially be

unknown and that is why we need to develop a general identification strategy.

Consider the observed probability P
(
Y c1 = y

(1)
2 , Y cd = y

(2)
2 , ∩h≥3

(
Y ch = y

(h)
jh

)
|x
)
and find its

limit when xh,1 → for h ≥ 3. Just as before, we take xh,1 → xh,1 if jh = 1 and take xh,1 → xh,1 if

jh = Mh. In this limit we identify

1∑
ℓ1=0

1∑
ℓ2=0

(−1)ℓ1+ℓ2F1,2;≤≤

(
α
(1)
1+ℓ1,2,j3,...,jD

− x1β1, α
(2)
2,1+ℓ2,j3,...,jD

− x2β2

)
∈ (0, 1).

Let us now take x1,1 → −∞. Then the known limit becomes

F2,≤(α
(2)
2,2,j3,...,jD

− x2β2︸ ︷︷ ︸
z2

)− F2,≤(α
(2)
2,1,j3,...,jD

− x2β2︸ ︷︷ ︸
z1

) ∈ (0, 1).

Using the knowledge of F2,≤ and the strict monotonicity of the obtained probability with respect

to z2 with z1 fixed we identify α
(2)
2,2,j3,...,jD

. Analogously we can identify α
(1)
2,2,j3,...,jD

by keeping

x1 fixed and taking x2,1 → −∞. Once α
(1)
2,2,j3,...,jD

, α
(2)
2,2,j3,...,jD

are identified, we can identify

α
(3)
2,2,r3(j3),...,jD

by taking in our observed probability xh,1 → in the manner described above but

11



now only for h ≥ 4. In the limit we identify

1∑
ℓ1=0

1∑
ℓ2=0

1∑
ℓ3=0

(−1)ℓ1+ℓ2+ℓ3F1,2,3;≤≤≤

(
α
(1)
1+ℓ1,2,1,j4,...,jD

− x1β1,

α
(2)
2,1+ℓ2,1,j4,...,jD

− x2β2, α
(3)
2,2,ℓ3,j4...,jD

− x3β3

)
∈ (0, 1)

if j3 = 1, and identify

1∑
ℓ1=0

1∑
ℓ2=0

1∑
ℓ3=0

(−1)ℓ1+ℓ2+ℓ3F1,2,3;≤≤>

(
α
(1)
1+ℓ1,2,M3,j4,...,jD

− x1β1,

α
(2)
2,1+ℓ2,M3,j4,...,jD

− x2β2, α
(3)
2,2,M3−ℓ3,j4...,jD

− x3β3

)
∈ (0, 1)

if j3 = M3. No matter which of these situations we have, we use the knowledge of F1,2,3;≤≤κ3 , the

knowledge of 5 out of 6 thresholds in them and the strict monotonicty of that limit with respect

to the unknown threshold (α
(3)
2,2,ℓ3,j4...,jD

in the first and α
(3)
2,2,M3−ℓ3,j4...,jD

in the second situation)

to identify this threshold. Analogously we can identify α
(h)
2,2,j3,...jh−1,rh(jh),jh+1,...,jD

for any h ≥ 4.

Thus, all the thresholds of R2,2,j3,...,jD are identified.

Building on this result, we will next look at the rectangles R3,2,j3,...,jD and R2,3,j3,...,jD (one index

change at a time) and identify their thresholds in a similar manner. Then we look at R3,3,j3,...,jD ,

R4,2,j3,...,jD , R2,4,j3,...,jD , etc. until we identify thresholds of all the rectangles considered in this

stage.

Subcase 2 Second, consider the case when E12 is bounded in some directions. Recall that it

is convex and has non-empty interior in R2 by Assumption 1 The idea is to use points near the

finite boundary to establish the identification of threshold. The machinery of the identification

procedure depends on some properties of points at the finite boundary. To describe it, let us

define the four quadrants in R2 originating from (0, 0)′ as

Os1s2 = {(s1λ1, s2λ2) : λi ≥ 0, i = 1, 2} for s1, s2 ∈ {+,−}.

E.g., O−+ e.g. contains all bivariate vectors with he first non-positive and the second non–

negative coordinate. s̄ will denote − if s is +, and will denote + if s is −.

For every point a = (a1, a2)’ at the finite boundary the interior of at least one quadrant a+Os1s2

12



for some (s1, s2) does not intersect E12 (if the interiors of all four such quadrants intersected

with E12, because of convexity of E12 it would contradict the fact that a it at the boundary). At

the same time, there are points a at the finite boundary for which two consecutive quadrants –

either a+Os1s2 and a+Os̄1s2 , or a+Os1s2 and a+Os1s̄2 for some (s1, s2) intersect E12 in their

interior (if it were not the case for all a at the finite boundary, then this would contradict the

fact that E12 has a non-empty interior in R2).

Once we found (s1, s2) such that a + Os1s2 intersects E12 in its interior and a + Os̄1s̄2 does not

intersect E12 in its interior, the direction of the proof depends which of the remaining quadrants

a+Os̄1s2 or a+Os1s̄2 intersects E12 in its interior (it may be both or just one of them). Suppose

a + Os̄1s2 intersects E12 in its interior. When s̄1 = −, s2 = +, we proceed from “north-west”

corner by starting with q1 = 2, q2 = M2−1 and gradually increasing q1 and gradually decreasing

q2. When s̄1 = +, s2 = +, we proceed from “north-east” corner by starting with q1 = M1 − 1,

q2 = M2 − 1 and gradually decreasing both. When s̄1 = +, s2 = −, we proceed from “south-

east” corner by starting with q1 = M1 − 1, q2 = 2 and gradually decreasing q1 and increasing

q2. Finally, when s̄1 = −, s2 = −, we proceed from “south-west” corner by starting with q1 = 2,

q2 = 2 and gradually increasing both.

For concreteness, in our proof suppose the interior of a + O++ does not overlap with E12
whereas the interiors of a + O−+ do a + O−− do. We proceed in our identification from the

“north-west corner” by starting with q1 = 2, q2 = M2 − 1. Consider the observed probability

P
(
Y c1 = y

(1)
2 , Y c2 = y

(2)
M2−1, ∩h≥3(Y

ch = y
(h)
jh

)
|x) and find its limit when xh,1 converges for h ≥ 3

in a way described earlier (take xh,1 → xh,1 if jh = 1 and take xh,1 → xh,1 if jh = Mh). In this

limit we identify

Q(x1, x2) =
1∑

ℓ1=0

1∑
ℓ2=0

(−1)ℓ1+ℓ2F1,2;≤>(α
(1)
1+ℓ1,M2−1,j3,...,jD

−x1β1, α
(2)
2,M2−1−ℓ2,j3,...,jD

−x2β2) ∈ (0, 1) (13)

for all (x1, x2) in S1(2) ∩ S2(M2 − 1). The limit has two unknown thresholds: α
(1)
2,M2−1,j3,...,jD

and

α
(2)
2,M2−2,j3,...,jD

. Suppose there is another set of parameters (α̃
(1)
2,M2−1,j3,...,jD

, α̃
(2)
2,M2−2,j3,...,jD

) different

from α
(1)
2,M2−1,j3,...,jD

and α
(2)
2,M2−2,j3,...,jD

and that generate the same observed probabilities (13) for

all (x1, x2) in S1(2) ∩ S2(M2 − 1). Denote

∆1 = α
(1)
2,M2−1,j3,...,jD

− α
(1)
1,M2−1,j3,...,jD

> 0, ∆2 = α
(2)
2,M2−1,j3,...,jD

− α
(2)
2,M2−2,j3,...,jD

> 0,

δ1 = α̃
(1)
2,M2−1,j3,...,jD

− α
(1)
1,M2−1,j3,...,jD

> 0, δ2 = α
(2)
2,M2−1,j3,...,jD

− α̃
(2)
2,M2−2,j3,...,jD

> 0

13



for the two sets of thresholds. The observational equivalence in terms of probabilities implies

that (∆1 − δ1)(∆2 − δ2) < 0 as it would be easy to obtain a contradiction otherwise from the

properties of F1,2;≤>). Now define z1 = a1 −min{∆1, δ1}, z2 = a2 + min{∆2, δ2} and choose x1

and x2 such that z1 = α
(1)
1,M2−1,j3,...,jD

− x1β1, z2 = α
(2)
2,M2−1,j3,...,jD

− x2β2. Define rectangles

R∆ = [z1, z1 +∆1]× [z2 −∆2, z2], Rδ = [z1, z1 + δ1]× [z2 − δ2, z2].

From the property (∆1 − δ1)(∆2 − δ2) < 0, we can show that R∆ ∩Rδ = [z1, a1]× [a2, z2]. From

the properties of orthants a + Os1s2 supposed earlier we conclude that the interior of R∆ ∩ Rδ

overlaps with E12 thus showing that for the chosen (x1, x2) the probability Q(x1, x2) computed in

(13) is strictly positive (by our supposition, both sets of thresholds produce the same Q(x1, x2)).

Then we can equivalently represent Q(x1, x2) in the following two ways:

Q(x1, x2) = Pr(ε1,ε2)((ε1, ε2)
′ ∈ R∆ ∩Rδ) + Pr(ε1,ε2)((ε1, ε2)

′ ∈ R∆\Rδ)

Q(x1, x2) = Pr(ε1,ε2)((ε1, ε2)
′ ∈ R∆ ∩Rδ) + Pr(ε1,ε2)((ε1, ε2)

′ ∈ Rδ\R∆).

However, this gives us a contradiction since from the properties of quadrants a + Os1s2 sup-

posed in the beginning and the convexity of E12 we have one of Pr(ε1,ε2)((ε1, ε2)
′ ∈ R∆\Rδ) and

Pr(ε1,ε2)((ε1, ε2)
′ ∈ R∆\Rδ) is 0 whereas the other one is strictly positive. E.g., if ∆1 < δ1, then

we must have ∆2 > δ2 (as required by (∆1 − δ1)(∆2 − δ2) < 0) and then Pr(ε1,ε2)((ε1, ε2)
′ ∈

R∆\Rδ) > 0, Pr(ε1,ε2)((ε1, ε2)
′ ∈ Rδ\R∆) = 0. Note that if we now vary (x1, x2) within a small

enough neighborhood, we will continue to obtain contradictions for Q(x̃1, x̃2) for covariate values

(x̃1, x̃2) within that neighborhood. Thus, the contradiction will in fact be obtained on a positive

mass set of (x1, x2). This contradiction means that the set of two thresholds we are looking for

is unique.

Once thresholds α
(1)
2,M2−1,j3,...,jD

, α̃
(2)
2,M2−2,j3,...,jD

are identified, we can proceed analogously to

Subcase 1 to identify α
(h)
2,M2−1,j3,...jh−1,r(jh),jh+1,...,jD

for any h ≥ 3. Thus, all the thresholds of

R2,M2−1,j3,...,jD are identified.

Building on this result, we will next look at the rectangles R3,M2−1,j3,...,jD and R2,M2−2,j3,...,jD

(one index change at a time) and identify their thresholds in a similar manner. Then we look at

R3,M2−2,j3,...,jD , R4,M2−1,j3,...,jD , R2,M2−3,j3,...,jD , etc. until we identify thresholds of all the rectangles

considered in this stage.

Stage 4. In this stage we build on the results of previous stages and consider rectangular border
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regions where we allow discrete processes in three dimensions d1, d2, d3 to take any of their

possible values whereas in all the other dimensions they take their boundary values. To analyze

the identification of threshold considered in this stage, without a loss of generality we can take

d1 = 1, d2 = 2, d3 = 3.

When considering rectangles Rq,q2,q3,j3,..,jD , where jh ∈ {1,Mh} for h ≥ 4, the main idea is to

start building the identification (the knowledge of relevant) of thresholds gradually, first, e.g. by

taking with q1 = 2, q2 = M2 − 1, q3 = M3 − 1 which guarantees that at every step at most D

thresholds are unknown. At every steps, we will have D−3 known thresholds fixed at ∞ or −∞
and three other known thresholds be finite and identified from previous stages and steps.

The way in which one proceeds gradually depends on the properties of the support E123 of

(ε1, ε2, ε3)
′. Previously, in Step 3, we considered quadrants in R2. Now, we have to consider eight

orthants in R3 originating from (0, 0, 0)′:

Os1s2s3 = {(s1λ1, s2λ2, s3λ3) : λi ≥ 0, i = 1, 2, 3} for s1, s2, s3 ∈ {+,−}.

Subcase 1 If there is a point e = (e1, e2, e3)
′ ∈ E123 such that e + Os1s2s3 is fully contained

in E123, then we can proceed with the identification of the thresholds from the “corner” with

qd = Md − 1 and taking κd as > if sd = −, and with qd = 2 if and taking κd as ≤ if sd = +. The

indices then change gradually by one further step in their respective directions.

For concreteness, suppose e+O+,+,− is fully contained in E123. By the condition of the theorem

we necessarily have x1,1 = −∞, x2,1 = −∞, x3,1 = ∞. The we first consider q1 = 2, q2 = 2,

q3 = M3 − 1 (κ1 and κ2 are then > and κ3 is ≤). Using results of Stage 3, we find that

we only deal with D unknown thresholds α
(1)
2,2,M3−1,j4,...,jD

, α
(2)
2,2,M3−1,j4,...,jD

, α
(3)
2,2,M3−2,j4,...,jD

and

α
(h)
2,2,M3−1,j4,...,jh−1,rh(jh),jh+1,...,jD

, h ≥ 4. Notice that at this stage, due to coherency requirements,

it may be strictly fewer than D of these thresholds unknown. However, all D may potentially be

unknown and that is why we need to develop a general identification strategy.

Consider the observed P
(
Y c1 = y

(1)
2 , Y cd = y

(2)
2 , Y c3 = y

(2)
M3−1. ∩h≥4

(
Y ch = y

(h)
jh

)
|x
)

and find

its limit when xh,1 → for h ≥ 4. Just as before, we take xh,1 → xh,1 if jh = 1 and take xh,1 → xh,1
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if jh = Mh. In this limit we identify

1∑
ℓ1=0

1∑
ℓ2=0

(−1)ℓ1+ℓ2+ℓ3F1,2,3;≤,≤,>

(
α
(1)
1+ℓ1,2,M3−1,j4,...,jD

− x1β1,

α
(2)
2,1+ℓ2,M3−1,j4,...,jD

− x2β2, α
(3)
2,2,M3−1−ℓ3,j4,...,jD

− x3β3

)
∈ (0, 1).

Let us now take x1,1 → −∞, x2,1 → −∞. Then the known limit becomes

F3,>(α
(3)
2,2,M3−2,j4,...,jD

− x3β3︸ ︷︷ ︸
z2

)− F3,>(α
(3)
2,2,M3−1,j4,...,jD

− x3β3︸ ︷︷ ︸
z1

) ∈ (0, 1).

Using the knowledge of F3,> and the strict monotonicity of the obtained probability with re-

spect to z2 when z1 is known (recall that α
(3)
2,2,M3−1,j4,...,jD

is known from Stage 3) we identify

α
(3)
2,2,M3−2,j4,...,jD

.

Analogously, when taking x1,1 → −∞, x3,1 → ∞, the known limit becomes

F2,≤(α
(2)
2,2,M3−1,j4,...,jD

− x2β2︸ ︷︷ ︸
z2

)− F2,≤(α
(2)
2,1,M3−1,j4,...,jD

− x2β2︸ ︷︷ ︸
z1

) ∈ (0, 1).

We can identify α
(2)
2,2,M3−1,...,jD

using the knowledge of F2,≤ and the strict monotonicity of the

obtained probability with respect to z2 when z1 is known (recall that α
(2)
2,1,M3−1,j4,...,jD

is known

from Stage 3). Analogously we identify α
(1)
2,2,M3−1,j4,...,jD

.

Once α
(1)
2,2,M3−1,j4,...,jD

, α
(2)
2,2,M3−1,j4,...,jD

and α
(3)
2,2,M3−2,j4,...,jD

are identified, we can identify

α
(h)
2,2,M3−1,j4,...,jh−1,rh(jh),jh+1,...,jD

, h ≥ 4, by taking in our observed probability xh,1 → in the manner

described above but now only for h ≥ 4. E.g. for h = 4 we identify

1∑
ℓ1=0

1∑
ℓ2=0

1∑
ℓ3=0

(−1)ℓ1+ℓ2+ℓ3+ℓ4F1,2,3,4;≤≤>≤

(
α
(1)
1+ℓ1,2,M3−1,1,j5:D

− x1β1,

α
(2)
2,1+ℓ2,M3−1,1,j5:D

− x2β2, α
(3)
2,2,M3−1,1,j5:D

− x3β3, , α
(4)
2,2,M3−1,ℓ4,j5:D

− x4β4

)
∈ (0, 1)

if j4 = 1 (here j5:D ≡ (j1, . . . , jD)), and identify

1∑
ℓ1=0

1∑
ℓ2=0

1∑
ℓ3=0

(−1)ℓ1+ℓ2+ℓ3+ℓ4F1,2,3,4;≤≤>>

(
α
(1)
1+ℓ1,2,M3−1,M3,j5:D

− x1β1,

α
(2)
2,1+ℓ2,M3−1,M3,j5:D

− x2β2, α
(3)
2,2,M3−1,M3,j5:D

− x3β3, , α
(4)
2,2,M3−1,M3−ℓ4,j5:D

− x4β4

)
∈ (0, 1)
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if j4 = M4. No matter which of these situations we have, we use the knowledge of F1,2,3,4;≤≤>κ4 ,

the knowledge of 7 out of 8 thresholds in them and the strict monotonicty of that limit with

respect to the unknown threshold (α
(4)
2,2,M3−1,1,...,jD

in the first and α
(4)
2,2,M3−1,M4−1,j4...,jD

in the

second situation) to identify this threshold. Proceeding analogously with other h ≥ 4, all the

thresholds of R2,2,M3−1,j4,...,jD are identified.

Building on this result, we will next look at the rectangles R3,2,M3−1,j4,...,jD and R2,3,M3−1,j4,...,jD

and R2,2,M3−2,j4,...,jD (one index change at a time in the respective direction) and identify their

thresholds in a similar manner and so on until we identify thresholds of all the rectangles con-

sidered in this stage.

Subcase 2 Suppose there is no point e = (e1, e2, e3)
′ ∈ E123 and no orthant Os1s2s3 such that

e + Os1s2s3 is fully contained in E123. Then the convexity and non-empty interior properties of

E123 guarantee that there is point e ∈ ∂E123 at the finite boundary of E123 such that at least two

adjacent orthants e + Os1s2s3 (orthants Os1s2s3 and Oτ1τ2τ3 are adjacent if they have a common

face – thus, at least two of signs are the same) do not intersect the interior of E123 and four

orthants e+Os1,s2,s3 with a consistent sign in one dimension intersect E123 in their interior.

The exact nature of these orthants will determine the direction of the proof (from which “corner”

we start and which κd, d = 1, 2, 3, we use in the proof). After this is decided, we consider the first

3-dimensional rectangle and assume there are two sets of thresholds. To derive a contradiction,

we construct two 3-dimensional rectangles – with one determined by the first set of thresholds

and the other determined by the second set of thresholds – near e, and show their symmetric

differences have mismatched masses under the distribution of (ε1, ε2, ε3)
′ (e.g. one zero in an

empty orthant, one positive in an intersecting orthant).

For concreteness, assume the consistent sign is in dimension 3 with s3 = −, so all four orthants

e+Os1s2− (for s1, s2 ∈ {+,−}) intersect the interior int(E123) of E123 (positive mass in any small

rectangle with a vertex at E123 and located in ∪s1,s2(e+Os1s2−) then, by convexity).

First, consider the case when e3 in e provides a global maximum value of E123. This implies that

the interiors of four orthants e + Os1s2+ do not intersect E123. In this case we proceed in the

decreasing order in dimension 3 (thus, choosing q3 = M3 − 1 and κ3 as >). Directions in other

two dimensions can be any. For concreteness, let us take them to be increasing – thus, choose

q1 = 2, q2 = 2 and κ1, κ2 as ≤).
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Consider observed P
(
Y c1 = y

(1)
2 , Y c2 = y

(2)
2 , Y c3 = y

(3)
M3−1, ∩h≥4(Y

ch = y
(h)
jh

)
|x) and find its limit

when xh,1 → for h ≥ 4 in a way described earlier (take xh,1 → xh,1 if jh = 1 and take xh,1 → xh,1

if jh = Mh). Denote j ≡ (j4, . . . , jD). In the described limit we identify

Q(x1, x2, x3) =

1∑
ℓ1=0

1∑
ℓ2=0

(−1)ℓ1+ℓ2+ℓ3F1,2,3;≤≤>(α
(1)
1+ℓ1,2,M3−1,j − x1β1,

α
(2)
2,1+ℓ2,M3−1,j − x2β2, α

(3)
2,2,M3−1−ℓ3,j

− x3β3) ∈ (0, 1) (14)

for all (x1, x2, x3) in S1(2)∩S2(2)∩S3(M3−1). The limit has three unknown thresholds: α
(d)
2,2,M3−1,j,

d = 1, 2, α
(3)
2,2,M3−2,j. Suppose there is different set of such three threshold parameters – we can

use the same notation but with tildes for this alternative threshold set – that generate the same

observed probabilities (14) for all (x1, x2, x3) in S1(2) ∩ S2(2) ∩ S3(M3 − 1). Denote

∆1 = α
(1)
2,2,M3−1,j − α

(1)
1,2,M3−1,j, ∆2 = α

(2)
2,2,M3−1,j − α

(2)
2,1,M3−1,j, ∆3 = α

(3)
2,2,M3−1,j − α

(3)
2,2,M3−2,j,

δ1 = α̃
(1)
2,2,M3−1,j − α

(1)
1,2,M3−1,j, δ2 = α̃

(2)
2,2,M3−1,j − α

(2)
2,1,M3−1,j, δ3 = α̃

(3)
2,2,M3−1,j − α

(3)
2,2,M3−2,j,

for the two sets of thresholds. Clearly, ∆k > 0, δk > 0, k = 1, 2, 3. The observational equivalence

in terms of probabilities implies that ∃d1, d2 ∈ {1, 2, 3} such that ∆d1 > δd1 , ∆d2 < δd2 as

otherwise would mean that two sets of thresholds are ordered in the coordinate-wise sense and

then it would be easy to obtain a contradiction otherwise from the properties of F1,2,3;≤≤>). We

can take any ∆d and δd, d = 1, 2, 3, be different (otherwise we would revert to earlier stages and

obtain a contradiction from results there).

Define z1 = e1+min{δ1,∆1}, z2 = e2−min{δ2,∆2}, z3 = e3−min{δ3,∆3} and choose x1, x2, x3

such that z1 = α
(1)
1,2,M3−1,j−x1β1, z2 = α

(2)
2,1,M3−1,j−x2β2, z3 = α

(3)
2,2,M3−2,j−x3β3 (all the thresholds

used here are known at this identification stage). Define rectangles

Tυ = [z1, z1 + υ1]× [z2, z2 + υ2]× [z3, z3 − υ3], υ ∈ {∆, δ}. (15)

Note that T∆ ∩ Tδ = [z1, e1] × [z2, e2] × [z3, e3] ∈ e + O−−+. Suppose ∆3 > δ3. Then the

intersection of T∆\Tδ with any neighborhood of e as well as the interesection with the interior of

O−−− is non-empty and these intersections have interiors in R3. Hence, Pr(ε1,ε2,ε3)((ε1, ε2, , ε3)
′ ∈

T∆\Tδ) > 0. At the same time the interior of T∆\Tδ is full contained in ∪s1,s2Os1s2+. Hence

Pr(ε1,ε2,ε3)((ε1, ε2, , ε3)
′ ∈ Tδ\T∆) = 0, which gives us a contradiction. This contradiction can

be obtained on a positive measure of (x1, x2, x3) by moving around the boundary point e. This

contradiction eliminates a possibility of two different sets of thresholds that can generate observed
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probabilities of choice.

Continuing with the case of all four orthants e+Os1s2− (for s1, s2 ∈ {+,−}) intersecting int(E123),
now consider the case when e3 in e is not a global maximum of E123 in dimension 3. Then by

convexity of E123 there will be two orthants among e+Os1s2+ that have 3-dimensional intersections

with int(E123) (and of, course, by convexity of E123 and by the fact that e is at a finite boundary

the other two such orthants will have no intersection with int(E123)). Suppose e + O−−+ and

e+O+−+ have no intersection with int(E123) whereas e+O−++ and e+O+++ have 3-dimensional

intersections with int(E123). The nature of these orthants determines that the proof proceeds in

the increasing order in dimension 3 (thus, choosing q3 = 2 and κ3 as ≤) and in the increasing

order in dimension 2 (thus, choosing q2 = 2 and κ2 as ≤). As for dimension 1, we can proceed

in any direction by taking q1 to be either 2 or M1 − 1, so let’s e.g. choose q1 = 2 and κ1 to be ≤
and, thus, proceed in the increasing direction too in this dimension. .

Consider observed

P
(
Y c1 = y

(1)
2 , Y c2 = y

(2)
2 , Y c3 = y

(3)
2 , ∩h≥4(Y

ch = y
(h)
jh

)
|x)

and find its limit when xh,1 → for h ≥ 4 in a way described earlier (take xh,1 → xh,1 if jh = 1

and take xh,1 → xh,1 if jh = Mh). In this limit we identify

Q(x1, x2, x3) =
1∑

ℓ1=0

1∑
ℓ2=0

(−1)ℓ1+ℓ2+ℓ3F1,2,3;≤≤≤(α
(1)
1+ℓ1,2,2,j

− x1β1,

α
(2)
2,1+ℓ2,2,j

− x2β2, α
(3)
2,2,1+ℓ3,j

− x3β3) ∈ (0, 1) (16)

for all (x1, x2, x3) in S1(2) ∩ S2(2) ∩ S3(2). The limit has three unknown thresholds: α
(d)
2,2,2,j,

d = 1, 2, 3. Suppose there is different set of such three threshold parameters – we can use the

same notation but with tildes for this alternative threshold set – that generate the same observed

probabilities (16) for all (x1, x2, x3) in S1(2) ∩ S2(2) ∩ S3(2). Denote

∆1 = α
(1)
2,2,2,j − α

(1)
1,2,2,j, ∆2 = α

(2)
2,2,2,j − α

(2)
2,1,2,j, ∆3 = α

(3)
2,2,2,j − α

(3)
2,2,1,j,

δ1 = α̃
(1)
2,2,2,j − α

(1)
1,2,2,j, δ2 = α̃

(2)
2,2,2,j − α

(2)
2,1,2,j, δ3 = α̃

(3)
2,2,2,j − α

(3)
2,2,1,j,

for the two sets of thresholds. Clearly, ∆k > 0, δk > 0, k = 1, 2, 3. Similar to before, the

observational equivalence in terms of probabilities implies that ∆d1 > δd1 , ∆d2 < δd2 for some

∃d1, d2 ∈ {1, 2, 3} and we can take any ∆d and δd, d = 1, 2, 3, be different.
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Sub-case 1A. ∆1 > δ1, ∆2 > δ2, ∆3 < δ3. Define z1 = e1 − δ1, z2 = e2 − δ2, z3 = e3 −∆3 and

choose x1, x2, x3 such that z1 = α
(1)
1,2,2,j − x1β1, z2 = α

(2)
2,1,2,j − x2β2, z3 = α

(3)
2,2,1,j − x3β3 (note that

all the thresholds used here are known at this identification stage). Define

Tυ = [z1, z1 + υ1]× [z2, z2 + υ2]× [z3, z3 + υ3], υ ∈ {∆, δ}. (17)

Note that T∆ ∩Tδ = [z1, e1]× [z2, e2]× [z3, e3] ∈ e+O−−−. Note that Tδ\T∆ = [z1, e1]× [z2, e2]×
(e3, e3 + δ3 − ∆3] is in the closure of O−−+ and, thus, has probability 0. At the same time,

T∆\Tδ ∈ O+−− ∪ O−+− ∪ O++− and its intersection with any neighborhood of e = (e1, e2, e3)
′

has a non-empty 3-dimensional interior. By the properties of E123 and its boundary point e, this

implies that Pr(ε1,ε2,ε3)((ε1, ε2, , ε3)
′ ∈ T∆\Tδ) > 0 , which gives us a contradiction in this sub-

case. This contradiction can be obtained on a positive measure of (x1, x2, x3) by moving around

the boundary point e.

Sub-case 1B: ∆1 > δ1, ∆2 < δ2, ∆3 > δ3, and Sub-case 1C: ∆1 > δ1, ∆2 < δ2, ∆3 < δ3.

Define z1 = e1 − δ1, z2 = e2 − ∆2, z3 = e3. Choose x1, x2, x3 such that z1 = α
(1)
1,2,2,j − x1β1,

z2 = α
(2)
2,1,2,j − x2β2, z3 = α

(3)
2,2,1,j − x3β3 (note that all the thresholds used here are known at

this identification stage). Define rectangles T∆, Tδ as in (15). Then Tδ\T∆ is in O−++ and its

intersection with any neighborhood of e in O−++ has a non-empty interior in R3. This implies

that its probability is strictly positive. At the same time, T∆\Tδ is in the closure of O+−+ and

has probability zero. This gives a contradiction with a positive probability since we can vary

(z1, z2, z3) (and, hence, (x1, x2, x3)) slightly and get a contradiction through the discontinuity of

probabilities of Tδ\T∆ and T∆\Tδ then no orthants Os1s2+ in its interior intersects E123.

Sub-case 1D. ∆1 < δ1, ∆2 > δ2, ∆3 < δ3. This is completely analogous to Sub-case 1B with the

roles of ∆’s and δ’s reversed.

Sub-case 1E. ∆1 < δ1, ∆2 < δ2, ∆3 > δ3. This is completely analogous to Sub-case 1A with the

roles of ∆’s and δ’s reversed.

Sub-case 1F. ∆1 < δ1, ∆2 > δ2, ∆3 > δ3. This is completely analogous to Sub-case 1C with the

roles of ∆’s and δ’s reversed.

Contradictions obtained in each Sub-case mean that the set of two thresholds we are looking for is

unique. Hence, thresholds α
(d)
2,2,2,j, d = 1, 2, 3 are identified. After that we can proceed analogously

to Subcase 1 to identify α
(h)
2,2,2,j4,...jh−1,r(jh),jh+1,...,jD

for any h ≥ 4. Thus, all the thresholds of R2,2,2,j
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are identified. Building on this result, we will next look at the rectangles R3,2,2,j, R2,3,2,j and R2,2,3,j

(one index change at a time) and identify their thresholds in a similar manner. Then we look

at R3,3,2,j, R3,2,3,j, R2,3,3,j, etc. until we identify thresholds of all the rectangles considered in this

stage.

Stages 5 to D+1, Stage m here would deal with the case when D− (m−1) out of D discrete

responses are fixed at their boundary values but the rest can take any values. Identification

would proceed sequentially analogously to Stages 3 and 4. ■

3 Appendix C: Additional simulation results for Design

2

In Table 5, we provide the results for the thresholds in simulation Design 2. It is evident how

poorly the lattice model does in this case, relative to essentially no bias in the non-lattice model.

4 Appendix D: Additional illustration for the cryptocur-

rency application
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Table 5: Simulation results: Design 2 thresholds

Parameter Truth Non-lattice model Lattice model

α
(1)
11 -3.25

-3.27 (0.12)
-1.48 (0.04)α

(1)
12 -3.24 (0.12)

α
(1)
13 -0.5 -0.50 (0.07)

α
(1)
21 0.5 0.51 (0.09)

1.59 (0.04)α
(1)
22 1 0.97 (0.14)

α
(1)
23 5 5.02 (0.13)

α
(1)
31

8
8.03 (0.19)

5.12 (0.09)α
(1)
32 8.03 (0.19)

α
(1)
33 8.03 (0.19)

α
(2)
11 -4 -3.94 (0.32)

-1.10 (0.04)α
(2)
21 -2

-2.04 (0.16)

α
(2)
31 -1.99 (0.09)

α
(2)
41 0 -0.01 (0.09)

α
(2)
12

0.5
0.50 (0.05)

0.90 (0.04)α
(2)
22 0.50 (0.05)

α
(2)
32 0.50 (0.05)

α
(2)
42 4 3.99 (0.17)

Notes: Sample means and sample standard deviations (in parentheses) of the estimates
of the Design 2 threshold parameters, over 250 repeated samples.
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Figure 12: Binary decision tree describing the sequential (hierarchical) decision process
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